Skip to main content

Advertisement

Log in

Biodegradable Polyphosphazenes for Biomedical Applications

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Polyphosphazenes are an important class of biodegradable polymers with immense biomedical potential. These polymers consist of an inorganic backbone of -P = N- repeating units and variable organic side groups. Inorganic–organic hybrid polyphosphazenes project an ensemble of interesting properties such as biocompatibility, unique degradation behaviour with metabolizable by-products, easy synthesis and chemical modifications, and variable physical and chemical properties, which makes them interesting candidates for regenerative engineering, drug delivery, bioresorbable sutures, bioimaging, coatings, etc. to name a few. This review discusses polyphosphazene synthesis and chemistry, in vitro and in vivo biocompatibility, and degradation behaviour, and summarizes the biomedical advances made using polyphosphazenes in the last few decades.

Lay Summary

Polymers play a very important role in our daily lives. In the last few decades, polymers are being considered for different biomedical applications like resorbable sutures and degradable implants. Polyphosphazenes are a unique class of biodegradable polymers whose degradation by-products that can be easily absorbed by our bodies. This review introduces polyphosphazene synthesis and its properties and gives an overview of the different biomedical applications for which these polymers have been explored.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Copyright 2020 American Chemical Society

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Williams DF. The Williams dictionary of biomaterials. Liverpool University Press; 1999.

  2. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–45.

    Article  CAS  Google Scholar 

  3. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  4. Allcock HR, Kugel RL. Synthesis of high polymeric of alkoxy and aryloxyphosphonitriles. J Am Chem Soc Soc. 1965;87:4216.

    Article  CAS  Google Scholar 

  5. Gleria M, De Jaeger R. Polyphosphazenes: a review. Top Curr Chem. 2005;250:165–251.

    Article  CAS  Google Scholar 

  6. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT. Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter. 2010;6:3119–32.

    Article  CAS  Google Scholar 

  7. Ahmad M, Nawaz T, Hussain I, Chen X, Imran M, Hussain R, et al. Phosphazene cyclomatrix network-based polymer: chemistry, synthesis, and applications. ACS Omega. 2022;7:28694–707.

    Article  CAS  Google Scholar 

  8. Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5:128–54.

    Article  CAS  Google Scholar 

  9. Ganapathiappan S, Dhathathreyan KS, Krishnamurthy SS. New initiators for the ring-opening thermal polymerization of hexachlorocyclotriphosphazene: synthesis of linear poly(dichlorophosphazene) in high yields. Macromolecules. 1987;20:1501–5.

    Article  CAS  Google Scholar 

  10. Sennett MS, Hagnauer GL, Singler RE, Davies G. Kinetics and mechanism of the boron trichloride catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution. Macromolecules. 1986;19:959–64.

    Article  CAS  Google Scholar 

  11. Scopelianos AG, Allcock HR. Notes polymerization of hexachlorocyclotriphosphazene in the presence of carbon disulfide. Macromolecules. 1987;20:432–3.

    Article  CAS  Google Scholar 

  12. Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. Polyphosphazene polymers: the next generation of biomaterials for regenerative engineering and therapeutic drug delivery. J Vac Sci Technol B. 2020;38:030801.

    Article  CAS  Google Scholar 

  13. Allcock HR, Crane CA, Morrissey CT, Nelson JM, Reeves SD, Honeyman CH, et al. “Living” cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules. 1996;29:7740–7.

    Article  CAS  Google Scholar 

  14. Allcock HR, Reeves SD, Nelson JM, Crane CA, Manners I. Polyphosphazene block copolymers via the controlled cationic, ambient temperature polymerization of phosphoranimines. Macromolecules. 1997;30:2213–5.

    Article  CAS  Google Scholar 

  15. Honeyman CH, Manners I. Ambient temperature synthesis of poly(dichlorophosphazene) with molecular weight control. J Am Chem Soc. 1995;117:7035–6.

    Article  CAS  Google Scholar 

  16. Carriedo GA, García Alonso FJ, Gómez-Elipe P, Fidalgo JI, García Álvarez JL, Presa-Soto A. A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5. Chem Eur J. 2003;9:3833–6.

    Article  CAS  Google Scholar 

  17. De Jaeger R, Gleriaby M. Poly(organophosphazene)s and related compounds: synthesis, properties and applications. Prog Polym Sci. 1998;23:179–276.

    Article  Google Scholar 

  18. Osada Y, Hashidzume M, Tsuchida E, Bell AT. Polymerization of phosphazene crystal by plasma exposure. Nature. 1980;286:693–4.

    Article  CAS  Google Scholar 

  19. Allcock HR, Morozowich NL. Bioerodible polyphosphazenes and their medical potential. Polym Chem. 2012;3:578–90.

    Article  CAS  Google Scholar 

  20. Allcock HR, Chen C. Polyphosphazenes: phosphorus in inorganic-organic polymers. J Org Chem. 2020;85:14286–97.

    Article  CAS  Google Scholar 

  21. Steinke JHG, Greenland BW, Johns S, Parker MP, Atkinson RCJ, Cade IA, et al. Robust and operationally simple synthesis of poly(bis(2,2,2- trifluoroethoxy) phosphazene) with controlled molecular weight, low PDI, and high conversion. ACS Macro Lett. 2014;3:548–51.

    Article  CAS  Google Scholar 

  22. Meng L, Xu C, Liu T, Li H, Lu Q, Long J. One-pot synthesis of highly cross-linked fluorescent polyphosphazene nanoparticles for cell imaging. Polym Chem. 2015;6:3155–63.

    Article  CAS  Google Scholar 

  23. Metinoğlu Örüm S, Süzen DY. One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. J Macromol Sci A. 2019;56:854–9.

    Article  Google Scholar 

  24. Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and polyphosphazenes for biomedical applications. Molecules. 2022;27:8117.

    Article  CAS  Google Scholar 

  25. Allen RW, Allcock HR. Conformational analysis of poly (alkoxy-and aryloxyphosphazenes). Macromolecules. 1976;9:956–60.

    Article  CAS  Google Scholar 

  26. Allcock HR, Allen RW, Meister J. Conformational analysis of poly(dihalophosphazenes). Macromolecules. 1976;9:950–5.

    Article  CAS  Google Scholar 

  27. Mark JE, Allcock HR, West R. Inorganic polymers. Oxford University Press; 2005.

    Book  Google Scholar 

  28. Allcock HR, McDonnell GS, Riding GS, Manners I. Influence of different organic side groups on the thermal behaviour of polyphosphazenes: random chain cleavage, depolymerization and pyrolytic cross-linking. Chem Mater. 1990;2:425–32.

    Article  CAS  Google Scholar 

  29. Allcock HR, Krause WE. Polyphosphazenes with adamantyl side groups. Macromolecules. 1997;30:5683–7.

    Article  CAS  Google Scholar 

  30. Allcock HR, Connolly MS, Sisko JT, Al-Shali S. Effects of organic side group structures on the properties of poly(organophosphazenes). Macromolecules. 1988;21:323–34.

    Article  CAS  Google Scholar 

  31. Allcock HR. Poly(organophosphazenes)—unusual new high polymers. Angew Chem. 1977;16:147–56.

    Article  Google Scholar 

  32. Boileau S, Illy N. Activation in anionic polymerization: why phosphazene bases are very exciting promoters. Prog Polym Sci. 2011;36:1132–51.

    Article  CAS  Google Scholar 

  33. Allcock HR, Wagner LJ, Levin ML, Greigger PP. Synthesis and structure of transition-metal-bound phosphazenes derived from phosphazene anions. Organometallics. 1986;5:2244–50.

    Article  CAS  Google Scholar 

  34. Allcock HR, Allen RW, O’Brien JP. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes. J Am Chem Soc. 1977;99:3984–7.

    Article  CAS  Google Scholar 

  35. O’Brien JP, Ferrar WT, Allcock HR. Photolysis of poly(alkoxy-and aryloxyphosphazenes), [NP(OR)2]n1, 2. Macromolecules. 1979;12:108–13.

    Article  Google Scholar 

  36. Zheng C, Qiu L, Yao X, Zhu K. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation. Int J Pharm. 2009;373:133–40.

    Article  CAS  Google Scholar 

  37. Rothemund S, Teasdale I. Preparation of polyphosphazenes: a tutorial review. Chem Soc Rev. 2016;45:5200–15.

    Article  CAS  Google Scholar 

  38. Kumbar SG, Bhattacharyya S, Nukavarapu SP, Khan YM, Nair LS, Laurencin CT. In vitro and in vivo characterization of biodegradable poly(organophosphazenes) for biomedical applications. J Inorg Organomet Polym Mater. 2006;16:365–85.

    Article  CAS  Google Scholar 

  39. Allcock HR, Pucher SR, Scopelianos AG. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups: prototypes for new bioerodible polymers. Macromolecules. 1994;27:1–4.

    Article  CAS  Google Scholar 

  40. Andrianov AK, Marin A, Chen J. Synthesis, properties, and biological activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromol. 2006;7:394–9.

    Article  CAS  Google Scholar 

  41. Andrianov AK, Svirkin YY, LeGolvan MP. Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromol. 2004;5:1999–2006.

    Article  CAS  Google Scholar 

  42. Allcock HR, Fuller TJ, Matsumura K. Hydrolysis pathways for aminophosphazenes. Inorg Chem. 1982;21:515–21.

    Article  CAS  Google Scholar 

  43. Allcock HR, Fuller TJ, Mack DP, Matsumura K, Smeltz KM. Synthesis of poly[(amino acid alkyl ester)phosphazene]. J Am Chem Soc. 1967;10:824–30.

    Google Scholar 

  44. Ogueri KS, Escobar Ivirico JL, Li Z, Blumenfield RH, Allcock HR, Laurencin CT. Synthesis, physicochemical analysis, and side group optimization of degradable dipeptide-based polyphosphazenes as potential regenerative biomaterials. ACS Appl Polym Mater. 2019;1:1568–78.

    Article  CAS  Google Scholar 

  45. Weikel AL, Krogman NR, Nguyen NQ, Nair LS, Laurencin CT, Allcock HR. Polyphosphazenes that contain dipeptide side groups: synthesis, characterization, and sensitivity to hydrolysis. Macromolecules. 2009;42:636–9.

    Article  CAS  Google Scholar 

  46. Schacht E, Vandorpe J, Dejardin S, Lemmouchi Y, Seymour L. Biomedical applications of degradable polyphosphazenes. Biotechnol Bioeng. 1996;52:102–8.

    Article  CAS  Google Scholar 

  47. Crommen JHL, Schacht EH, Mense EH. Biodegradable polymers I. Synthesis of hydrolysis-sensitive poly[(organo]phosphazenes]. Biomaterials. 1992;13:511–20.

    Article  CAS  Google Scholar 

  48. Allcock HR, Pucher SR. Polyphosphazenes with glucosyl and methylamino, trifluroethoxy, phenoxy, or (methylethoxy)ethoxy side groups. Macromolecules. 1991;24:23–34.

    Article  CAS  Google Scholar 

  49. Allcock HR, Kwon S. Glyceryl polyphosphazenes: synthesis, properties and hydrolysis. Macromolecules. 1988;21:1980–5.

    Article  CAS  Google Scholar 

  50. Allcock HR, Austin PE, Neenan TX. Macromolecules phosphazene high polymers with bioactive substituent groups: prospective anesthetic aminophosphazenes. Macromolecules. 1982;15:689–93.

    Article  CAS  Google Scholar 

  51. Hindenlang MD, Soudakov AA, Imler GH, Laurencin CT, Nair LS, Allcock HR. Iodine-containing radio-opaque polyphosphazenes. Polym Chem. 2010;1:1467–74.

    Article  CAS  Google Scholar 

  52. Allcock HR, Singh A, Ambrosio AMA, Laredo WR. Tyrosine-bearing polyphosphazenes. Biomacromol. 2003;4:1646–53.

    Article  CAS  Google Scholar 

  53. Laurencin CT, Morris CD, Pierre-Jacques H, Schwartz ER, Keaton AR, Zou L. Osteoblast culture on bioerodible polymers: studies of initial cell adhesion and spread. Polym Adv Technol. 1992;3:359–64.

    Article  CAS  Google Scholar 

  54. Barrett EW, Phelps MVB, Silva RJ, Gaumond RP, Allcock HR. Patterning poly(organophosphazenes) for selective cell adhesion applications. Biomacromol. 2005;6:1689–97.

    Article  CAS  Google Scholar 

  55. Duan S, Yang X, Mao J, Qi B, Cai Q, Shen H, et al. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography. J Biomed Mater Res A. 2013;101A:307–17.

    Article  CAS  Google Scholar 

  56. Baillargeon AL, Penev KI, Mequanint K. One-pot substitution approach for the syntheses of nonfunctional and functional poly[(amino acid ester)phosphazene] Biomaterials. Macromol Mater Eng. 2017;302:1600318.

    Article  Google Scholar 

  57. Conconi MT, Lora S, Baiguera S, Boscolo E, Polin M, Scienza R, et al. In vitro culture of rat neuromicrovascular endothelial cells on polymeric scaffolds. J Biomed Mater Res A. 2004;71:669–74.

    Article  Google Scholar 

  58. Carampin P, Conconi MT, Lora S, Menti AM, Baiguera S, Bellini S, et al. Electrospun polyphosphazene nanofibers for in vitro rat endothelial cells proliferation. J Biomed Mater Res A. 2007;80:661–8.

    Article  Google Scholar 

  59. Huang Z, Yang L, Zhang X, Ruan B, Hu X, Deng X, et al. Synthesis and fluorescent property of biodegradable polyphosphazene targeting long-term in vivo tracking. Macromolecules. 2016;49:8508–19.

    Article  CAS  Google Scholar 

  60. Sethuraman S, Nair LS, El-Amin S, Farrar R, Nguyen MTN, Singh A, et al. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. J Biomed Mater Res A. 2006;77:679–87.

    Article  Google Scholar 

  61. Mehnath S, Rajan M, Sathishkumar G, Amarnath Praphakar R, Jeyaraj M. Thermoresponsive and pH triggered drug release of cholate functionalized poly(organophosphazene) – polylactic acid co-polymeric nanostructure integrated with ICG. Polymer. 2017;133:119–28.

    Article  CAS  Google Scholar 

  62. Ogueri KS, Ivirico JLE, Nair LS, Allcock HR, Laurencin CT. Biodegradable polyphosphazene-based blends for regenerative engineering. Regen Eng Transl Med. 2017;3:15–31.

    Article  CAS  Google Scholar 

  63. Ibim SEM, Ambrosio AMA, Kwon MS, El-Amin SF, Allcock HR, Laurencin CT. Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies. Biomaterials. 1997;18:1565–9.

    Article  CAS  Google Scholar 

  64. Deng M, Nair LS, Nukavarapu SP, Jiang T, Kanner WA, Li X, et al. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials. 2010;31:4898–908.

    Article  CAS  Google Scholar 

  65. Weikel AL, Owens SG, Morozowich NL, Deng M, Nair LS, Laurencin CT, et al. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Biomaterials. 2010;31:8507–15.

    Article  CAS  Google Scholar 

  66. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Krogman NR, et al. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid). Biomaterials. 2008;29:337–49.

    Article  CAS  Google Scholar 

  67. Ambrosio AMA, Allcock HR, Katti DS, Laurencin CT. Degradable polyphosphazene/poly(a-hydroxyester) blends: degradation studies. Biomaterials. 2002;23:1667–72.

    Article  CAS  Google Scholar 

  68. Krogman NR, Singh A, Nair LS, Laurencin CT, Allcock HR. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends. Biomacromol. 2007;8:1306–12.

    Article  CAS  Google Scholar 

  69. Huang Z, Gao C, Huang Y, Zhang X, Deng X, Cai Q, et al. Injectable polyphosphazene/ gelatin hybrid hydrogel for biomedical applications. Mater Des. 2018;160:1137–47.

    Article  CAS  Google Scholar 

  70. Silva Nykänen VP, Nykänen A, Puska MA, Silva GG, Ruokolainen J. Dual-responsive and super absorbing thermally cross-linked hydrogel based on methacrylate substituted polyphosphazene. Soft Matter. 2011;7:4414–24.

    Article  Google Scholar 

  71. Verret V, Wassef M, Pelage JP, Ghegediban SH, Jouneau L, Moine L, et al. Influence of degradation on inflammatory profile of polyphosphazene coated PMMA and trisacryl gelatin microspheres in a sheep uterine artery embolization model. Biomaterials. 2011;32:339–51.

    Article  CAS  Google Scholar 

  72. Peach MS, James R, Toti US, Deng M, Morozowich NL, Allcock HR, et al. Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells. Biomed Mater. 2012;7:045016.

    Article  Google Scholar 

  73. Ullah RS, Wang L, Yu H, Abbasi NM, Akram M, Ul-Abdin Z, et al. Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery. RSC Adv. 2017;7:23363–91.

    Article  CAS  Google Scholar 

  74. Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. A regenerative polymer blend composed of glycylglycine ethyl ester-substituted polyphosphazene and poly(lactic- co-glycolic acid). ACS Appl Polym Mater. 2020;2:1169–79.

    Article  CAS  Google Scholar 

  75. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Jiang T, Weikel AL, et al. In situ porous structures: a unique polymer erosion mechanism in biodegradable dipeptide-based polyphosphazene and polyester blends producing matrices for regenerative engineering. Adv Funct Mater. 2010;20:2794–806.

    Article  CAS  Google Scholar 

  76. Shan D, Huang Z, Zhao Y, Cai Q, Yang X. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene. Biomed Mater. 2014;9:061001.

    Article  CAS  Google Scholar 

  77. Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, et al. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromol. 2008;9:1818–25.

    Article  CAS  Google Scholar 

  78. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Formation of hydroxyapatite-polyphosphazene polymer composites at physiologic temperature. J Biomed Mater Res A. 2006;77:416–25.

    Article  CAS  Google Scholar 

  79. Cheheltani R, Ezzibdeh RM, Chhour P, Pulaparthi K, Kim J, Jurcova M, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials. 2016;102:87–97.

    Article  CAS  Google Scholar 

  80. Il Kim J, Kim B, Chun CJ, Lee SH, Song SC. MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials. 2012;33:4836–42.

    Article  Google Scholar 

  81. Hu Y, Meng L, Niu L, Lu Q. Highly cross-linked and biocompatible polyphosphazene-coated superparamagnetic Fe3O4 nanoparticles for magnetic resonance imaging. Langmuir. 2013;29:9156–63.

    Article  CAS  Google Scholar 

  82. Jing X, Zhi Z, Jin L, Wang F, Wu Y, Wang D, et al. PH/redox dual-stimuli-responsive cross-linked polyphosphazene nanoparticles for multimodal imaging-guided chemo-photodynamic therapy. Nanoscale. 2019;11:9457–67.

    Article  CAS  Google Scholar 

  83. Haidar A, Ali AA, Veziroglu S, Fiutowski J, Eichler H, Müller I, et al. PTFEP-Al2O3 hybrid nanowires reducing thrombosis and biofouling. Nanoscale Adv. 2019;1:4659–64.

    Article  CAS  Google Scholar 

  84. Wang D, Ren Y, Shao Y, Meng L. Multifunctional polyphosphazene-coated multi-walled carbon nanotubes for the synergistic treatment of redox-responsive chemotherapy and effective photothermal therapy. Polym Chem. 2017;8:6938–42.

    Article  CAS  Google Scholar 

  85. Huang Y, Jing W, Li Y, Cai Q, Yang X. Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation. Colloids Surf B. 2021;204:111785.

    Article  CAS  Google Scholar 

  86. Hu L, Zhang A, Liu K, Lei S, Ou G, Cheng X. A facile method to prepare composite and porous polyphosphazene membranes and investigation of their properties. RSC Adv. 2014;4:35769–76.

    Article  CAS  Google Scholar 

  87. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT, Pratt LT. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Br. 2004;86:1200–8.

    Article  CAS  Google Scholar 

  88. Borden M, Attawia M, Laurencin CT. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res. 2002;61:421–9.

    Article  CAS  Google Scholar 

  89. Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR, et al. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromol. 2004;5:2212–20.

    Article  CAS  Google Scholar 

  90. Bhattacharyya S, Nair LS, Singh A, Krogman NR, Greish YE, Brown PW, Allcock HR, Laurencin CT. Electrospinning of poly[bis(ethyl alanato) phosphazene] nanofibers. J Biomed Nanotechnol. 2006;2:36–45.

    Article  CAS  Google Scholar 

  91. Khan RU, Yu H, Wang L, Zhang Q, Xiong W, Zain-Ul-Abdin, et al. Synthesis of polyorganophosphazenes and preparation of their polymersomes for reductive/acidic dual-responsive anticancer drugs release. J Mater Sci. 2020;55:8264–84.

    Article  CAS  Google Scholar 

  92. Akram M, Wang L, Yu H, Khalid H, Abbasi NM, Zain-Ul-Abdin, et al. Synthesis of reductive responsive polyphosphazenes and their fabrication of nanocarriers for drug delivery application. Int J Polym Mater. 2016;65:581–91.

    Article  CAS  Google Scholar 

  93. Huang ZH, Wei PF, Jin L, Hu XQ, Cai Q, Yang XP. Photoluminescent polyphosphazene nanoparticles for: in situ simvastatin delivery for improving the osteocompatibility of BMSCs. J Mater Chem B. 2017;5:9300–11.

    Article  CAS  Google Scholar 

  94. Lee SM, Chun CJ, Heo JY, Song SC. Injectable and thermosensitive poly(organophosphazene) hydrogels for a 5-Fluorouracil delivery. J Appl Polym Sci. 2009;113:3831–9.

    Article  CAS  Google Scholar 

  95. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med 2012.

  96. Ogueri KS, Allcock HR, Laurencin CT. Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Prog Polym Sci. 2019;98:101146.

    Article  CAS  Google Scholar 

  97. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–79.

    Article  CAS  Google Scholar 

  98. Khalid Z, Ali S, Akram M. Review on polyphosphazenes-based materials for bone and skeleton tissue engineering. Int J Polym Mater Polym Biomater. 2018;67:693–701.

    Article  CAS  Google Scholar 

  99. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4:1268–85.

    Article  CAS  Google Scholar 

  100. Elgendy HM, Norman ME, Keaton AR, Laurencin CT. Osteoblast-like cell (MC3T3-El) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material. Biomaterials. 1993;14:263–9.

    Article  CAS  Google Scholar 

  101. Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res. 1993;27:963–73.

    Article  CAS  Google Scholar 

  102. Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, et al. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res. 1996;30:133–8.

    Article  CAS  Google Scholar 

  103. El-Amin SF, Kwon MS, Starnes T, Allcock HR, Laurencin CT. The biocompatibility of biodegradable glycine containing polyphosphazenes: a comparative study in bone. J Inorg Organomet Polym Mater. 2006;16:387–96.

    Article  CAS  Google Scholar 

  104. Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Krogman N, et al. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: side group effects. Acta Biomater. 2010;6:1931–7.

    Article  CAS  Google Scholar 

  105. Huang Z, Yang L, Hu X, Huang Y, Cai Q, Ao Y, et al. Molecular mechanism study on effect of biodegradable amino acid ester–substituted polyphosphazenes in stimulating osteogenic differentiation. Macromol Biosci. 2019;19:1800464.

    Article  Google Scholar 

  106. Lutzke A, Neufeld BH, Neufeld MJ, Reynolds MM. Nitric oxide release from a biodegradable cysteine-based polyphosphazene. J Mater Chem B. 2016;4:1987–98.

    Article  CAS  Google Scholar 

  107. Seo BB, Choi H, Koh JT, Song SC. Sustained BMP-2 delivery and injectable bone regeneration using thermosensitive polymeric nanoparticle hydrogel bearing dual interactions with BMP-2. J Control Release. 2015;209:67–76.

    Article  CAS  Google Scholar 

  108. Deng M, Nair LS, Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, et al. Biomimetic, bioactive etheric polyphosphazenepoly(lactide-co-glycolide) blends for bone tissue engineering. J Biomed Mater Res A. 2010;92:114–25.

    Article  Google Scholar 

  109. Ogueri KS, Ogueri KS, McClinton A, Kan HM, Ude CC, Barajaa MA, et al. In vivo evaluation of the regenerative capability of glycylglycine ethyl ester-substituted polyphosphazene and poly(lactic-co-glycolic acid) blends: a rabbit critical-sized bone defect model. ACS Biomater Sci Eng. 2021;7:1564–72.

    Article  CAS  Google Scholar 

  110. Gholivand K, Alavinasab Ardebili SA, Mohammadpour M, Eshaghi Malekshah R, Hasannia S, Onagh B. Preparation and examination of a scaffold based on hydroxylated polyphosphazene for tissue engineering: in vitro and in vivo studies. J Appl Polym Sci. 2022;139.

  111. Ambrosio AM, Sahota JS, Khan Y, Laurencin CT. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res. 2001;58:295–301.

    Article  CAS  Google Scholar 

  112. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate) phosphazene composites for biomedical applications. Biomaterials. 2005;26:1–9.

    Article  CAS  Google Scholar 

  113. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT. Composite formation from hydroxyapatite with sodium and potassium salts of polyphosphazene. J Mater Sci Mater Med. 2005;16:613–20.

    Article  CAS  Google Scholar 

  114. Greish YE, Sturgeon JL, Singh A, Krogman NR, Touny AH, Sethuraman S, et al. Formation and properties of composites comprised of calcium-deficient hydroxyapatites and ethyl alanate polyphosphazenes. J Mater Sci Mater Med. 2008;19:3153–60.

    Article  CAS  Google Scholar 

  115. Greish YE, Bender JD, Singh A, Nair LS, Brown PW, Allcock HR, et al. Hydrolysis of Ca-deficient hydroxyapatite precursors in the presence of alanine-functionalized polyphosphazene nanofibers. Ceram Int. 2013;39:519–28.

    Article  Google Scholar 

  116. Sethuraman S, Nair LS, El-Amin S, Nguyen MT, Singh A, Greish YE, et al. Development and characterization of biodegradable nanocomposite injectables for orthopaedic applications based on polyphosphazenes. J Biomater Sci Polym Ed. 2011;22:733–52.

    Article  CAS  Google Scholar 

  117. Brown JL, Nair LS, Bender J, Allcock HR, Laurencin CT. The formation of an apatite coating on carboxylated polyphosphazenes via a biomimetic process. Mater Lett. 2007;61:3692–5.

    Article  CAS  Google Scholar 

  118. Ambrosio AMA, Sahota JS, Runge C, Kurtz SM, Lakshmi S, Allcock HR, et al. Novel polyphosphazene-hydroxyapatite composites as biomaterials. IEEE Eng Med Biol Mag. 2003;22:18–26.

    Article  CAS  Google Scholar 

  119. Nichol JL, Morozowich NL, Allcock HR. Biodegradable alanine and phenylalanine alkyl ester polyphosphazenes as potential ligament and tendon tissue scaffolds. Polym Chem. 2013;4:600–6.

    Article  CAS  Google Scholar 

  120. Nichol JL, Morozowich NL, Decker TE, Allcock HR. Crosslinkable citronellol containing polyphosphazenes and their biomedical potential. J Polym Sci A Polym Chem. 2014;52:2258–65.

    Article  CAS  Google Scholar 

  121. Ren B, Hu X, Cheng J, Huang Z, Wei P, Shi W, et al. Synthesis and characterization of polyphosphazene microspheres incorporating demineralized bone matrix scaffolds controlled release of growth factor for chondrogenesis applications. Oncotarget. 2017;8:114314.

    Article  Google Scholar 

  122. Huang YC, Huang YY. Biomaterials and strategies for nerve regeneration. Artif Organs. 2006; 514–22.

  123. Zhang Q, Yan Y, Li S, Feng T. The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration. Mater Sci Eng C. 2010;30:160–6.

    Article  CAS  Google Scholar 

  124. Langone F, Lora S, Veronese FM, Caliceti P, Parnigotto PP, Valenti F, et al. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomateriols. 1995;16:347–53.

    Article  CAS  Google Scholar 

  125. Aldini NN, Fini M, Rocca M, Giavaresi G, Giardino R. Guided regeneration with resorbable conduits in peripheral nerve injuries. Int Orthop. 2000;24:121–5.

    Article  Google Scholar 

  126. Hong LTA, Kim YM, Park HH, Hwang DH, Cui Y, Lee EM, et al. An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun. 2017;8:533.

    Article  Google Scholar 

  127. Cornelissen A, Sakamoto A, Sato Y, Kawakami R, Mori M, Kawai K, et al. COBRA PzFTM coronary stent in clinical and preclinical studies: setting the stage for new antithrombotic strategies? Future Cardiol. 2022;18:207–17.

    Article  CAS  Google Scholar 

  128. Bates MC, Yousaf A, Sun L, Barakat M, Kueller A. Translational research and early favorable clinical results of a novel polyphosphazene (polyzene-F) nanocoating. Regen Eng Transl Med Springer. 2019;5:341–53.

    Article  CAS  Google Scholar 

  129. Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, et al. Simple signaling molecules for inductive bone regenerative engineering. PLoS. 2014;9:101627.

    Article  Google Scholar 

  130. Morozowich NL, Nichol JL, Mondschein RJ, Allcock HR. Design and examination of an antioxidant-containing polyphosphazene scaffold for tissue engineering. Polym Chem. 2012;3:778–86.

    Article  CAS  Google Scholar 

  131. Li Y, Shi Y, Duan S, Shan D, Wu Z, Cai Q, et al. Electrospun biodegradable polyorganophosphazene fibrous matrix with poly(dopamine) coating for bone regeneration. J Biomed Mater Res A. 2014;102:3894–902.

    Article  Google Scholar 

  132. Chun CJ, Lim HJ, Hong KY, Park KH, Song SC. The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation. Biomaterials. 2009;30:6295–308.

    Article  CAS  Google Scholar 

  133. Oredein-Mccoy O, Krogman NR, Weikel AL, Hindenlang MD, Allcock HR, Laurencin CT. Novel factor-loaded polyphosphazene matrices: potential for driving angiogenesis. J Microencapsul. 2009;26:544–55.

    Article  CAS  Google Scholar 

  134. Sobhani A, Rafienia M, Ahmadian M, Naimi-Jamal MR. Fabrication and characterization of polyphosphazene/calcium phosphate scaffolds containing chitosan microspheres for sustained release of bone morphogenetic protein 2 in bone tissue engineering. Tissue Eng Regen Med. 2017;14:525–38.

    Article  CAS  Google Scholar 

  135. Seo BB, Chang HI, Choi H, Koh JT, Yun KD, Lee JY, et al. New approach for vertical bone regeneration using in situ gelling and sustained BMP-2 releasing poly(phosphazene) hydrogel system on peri-implant site with critical defect in a canine model. J Biomed Mater Res B Appl Biomater. 2018;106:751–9.

    Article  CAS  Google Scholar 

  136. Seo BB, Koh JT, Song SC. Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect. Biomaterials. 2017;122:91–104.

    Article  CAS  Google Scholar 

  137. Lakshmi S, Katti DS, Laurencin CT. Biodegradable polyphosphazenes for drug delivery applications. Adv Drug Deliv Rev. 2003;55:467–82.

    Article  CAS  Google Scholar 

  138. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng. 2010;1:149–73.

    Article  CAS  Google Scholar 

  139. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nat Biomed Eng. 2021;5:951–67.

    Article  Google Scholar 

  140. Laurencin CT, Koh HJ, Neenan TX, Allcock HR, Langer R. Controlled release using a new bioerodible polyphosphazene matrix system. J Biomed Mater Res. 1987;21:1231–46.

    Article  CAS  Google Scholar 

  141. Qiu LY, Yan MQ. Constructing doxorubicin-loaded polymeric micelles through amphiphilic graft polyphosphazenes containing ethyl tryptophan and PEG segments. Acta Biomater. 2009;5:2132–41.

    Article  CAS  Google Scholar 

  142. Li X, Zhu X, Qiu L. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics. Acta Biomater. 2016;35:269–79.

    Article  Google Scholar 

  143. Song R, Yong JJ, Ju IK, Jin C, Youn SS. Synthesis, characterization, and tumor selectivity of a polyphosphazene-platinum(II) conjugate. J Control Release. 2005;105:142–50.

    Article  CAS  Google Scholar 

  144. Sharma R, Rawal RK, Malhotra M, Sharma AK, Bhardwaj TR. Design, synthesis and ex-vivo release studies of colon-specific polyphosphazene-anticancer drug conjugates. Bioorg Med Chem. 2014;22:1104–14.

    Article  CAS  Google Scholar 

  145. Avaji PG, Park JH, Lee HJ, Jun YJ, Park KS, Lee KE, et al. Design of a novel theranostic nanomedicine: synthesis and physicochemical properties of a biocompatible Polyphosphazene–platinum(II) conjugate. Int J Nanomed. 2016;11:837–51.

    CAS  Google Scholar 

  146. Jun YJ, Park JH, Park KS, Avaji PG, Lee KE, Lee HJ, et al. Design of theranostic nanomedicine (Ii): synthesis and physicochemical properties of a biocompatible polyphosphazene–docetaxel conjugate. Int J Nanomed. 2017;12:5373–86.

    Article  CAS  Google Scholar 

  147. Xu J, Zhu X, Qiu L. Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. Int J Pharm. 2016;498:70–81.

    Article  CAS  Google Scholar 

  148. Cho JK, Kuh HJ, Song SC. Injectable poly(organophosphazene) hydrogel system for effective paclitaxel and doxorubicin combination therapy. J Drug Target. 2014;22:761–7.

    Article  CAS  Google Scholar 

  149. Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, et al. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res. 2007;24:1944–53.

    Article  CAS  Google Scholar 

  150. Zhang JX, Li XJ, Qiu LY, Li XH, Yan MQ, Jin Yi, et al. Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups: preparation, in vitro and in vivo evaluation. J Control Release. 2006;116:322–9.

    Article  CAS  Google Scholar 

  151. Ozay H, Ilgin P, Ozyurt C, Ozay O. The single-step synthesis of thiol-functionalized phosphazene-based polymeric microspheres as drug carrier. Polym Plast Tech Mat. 2020;59:1944–55.

    CAS  Google Scholar 

  152. Teasdale I, Waser M, Wilfert S, Falk H, Brüggemann O. Photoreactive, water-soluble conjugates of hypericin with polyphosphazenes. Monatsh Chem. 2012;143:355–60.

    Article  CAS  Google Scholar 

  153. Ibim SM, El-Amin SF, Goad MEP, Ambrosio AMA, Allcock HR, Laurencin CT. In vitro release of colchicine using poly(phosphazenes): the development of delivery systems for musculoskeletal use. Pharm Dev Technol. 1998;3:55–62.

    Article  CAS  Google Scholar 

  154. Kumar S, Singh RK, Sharma R, Murthy RSR, Bhardwaj TR. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci. 2015;66:123–37.

    Article  CAS  Google Scholar 

  155. Jadhav VB, Jun YJ, Song JH, Park MK, Oh JH, Chae SW, et al. A novel micelle-encapsulated platinum(II) anticancer agent. J Control Release. 2010;147:144–50.

    Article  CAS  Google Scholar 

  156. Ozay H, Ilgin P, Ozay O. Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction. Int J Polym Mater. 2021;70:246–55.

    Article  CAS  Google Scholar 

  157. Onder A, Ozay H. Synthesis and characterization of biodegradable and antioxidant phosphazene-tannic acid nanospheres and their utilization as drug carrier material. Mater Sci Eng C. 2021;120:111723.

    Article  CAS  Google Scholar 

  158. Jian XZ, Shu HL, Li XH, Qiu LY, Xiao DL, Xiao JL, et al. Physicochemical characterization, in vitro, and in vivo evaluation of indomethacin-loaded nanocarriers self-assembled by amphiphilic polyphosphazene. J Biomed Mater Res A. 2008;86:914–25.

    Google Scholar 

  159. Henke H, Kryeziu K, Banfić J, Theiner S, Körner W, Brüggemann O, et al. Macromolecular Pt(IV) prodrugs from poly(organo)phosphazenes. Macromol Biosci. 2016;16:1239–49.

    Article  CAS  Google Scholar 

  160. Qiu L, Zheng C, Zhao Q. Mechanisms of drug resistance reversal in Dox-resistant MCF-7 cells by pH-responsive amphiphilic polyphosphazene containing diisopropylamino side groups. Mol Pharm. 2012;9:1109–17.

    Article  CAS  Google Scholar 

  161. Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, et al. Acid-responsive and biologically degradable polyphosphazene nanodrugs for efficient drug delivery. ACS Biomater Sci Eng. 2020;6:4285–93.

    Article  CAS  Google Scholar 

  162. Liang L, Fu J, Qiu L. Design of pH-sensitive nanovesicles via cholesterol analogue incorporation for improving in vivo delivery of chemotherapeutics. ACS Appl Mater Interfaces. 2018;10:5213–26.

    Article  CAS  Google Scholar 

  163. Mehmood S, Wang L, Yu H, Haq F, Amin ul B, Uddin MA, et al. 2022 Preparation of poly(cyclotriphosphazene-co-piperazine) nanospheres and their drug release behavior. Int J Polym Mater. 2022;71:139–47.

    Article  CAS  Google Scholar 

  164. Fu J, Liang L, Qiu L. In situ generated gold nanoparticle hybrid polymersomes for water-soluble chemotherapeutics: inhibited leakage and pH-responsive intracellular release. Adv Funct Mater. 2017;27:1604981.

    Article  Google Scholar 

  165. Hou SL, Chen SS, Huang ZJ, Lu QH. Dual-responsive polyphosphazene as a common platform for highly efficient drug self-delivery. J Mater Chem B. 2019;7:4319–27.

    Article  CAS  Google Scholar 

  166. Zhou N, Zhang N, Zhi Z, Jing X, Liu D, Shao Y, et al. One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy. J Mater Chem B. 2020;8:10540–8.

    Article  CAS  Google Scholar 

  167. Aichhorn S, Linhardt A, Halfmann A, Nadlinger M, Kirchberger S, Stadler M, et al. A pH-sensitive macromolecular prodrug as TLR7/8 targeting immune response modifier. Chem Eur J. 2017;23:17721–6.

    Article  CAS  Google Scholar 

  168. Wang D, Zhou N, Zhang N, Zhi Z, Shao Y, Meng L, et al. Facile preparation of pH/redox dual-responsive biodegradable polyphosphazene prodrugs for effective cancer chemotherapy. Colloids Surf B Biointerfaces. 2021;200:111573.

    Article  CAS  Google Scholar 

  169. Lee BH, Song SC. Synthesis and characterization of biodegradable thermosensitive poly(organophosphazene) gels. Macromolecules. 2004;37:4533–7.

    Article  CAS  Google Scholar 

  170. Lee BH, Lee YM, Sohn YS, Song SC. Thermosensitive and hydrolysis-sensitive poly(organophosphazenes). Polym Int. 2002;51:658–60.

    Article  CAS  Google Scholar 

  171. Chun CJ, Lee SM, Kim CW, Hong KY, Kim SY, Yang HK, et al. Doxorubicin-polyphosphazene conjugate hydrogels for locally controlled delivery of cancer therapeutics. Biomaterials. 2009;30:4752–62.

    Article  CAS  Google Scholar 

  172. Al-Abd AM, Hong KY, Song SC, Kuh HJ. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release. 2010;142:101–7.

    Article  CAS  Google Scholar 

  173. Kwak MK, Hur K, Yu JE, Han TS, Yanagihara K, Kim WH, et al. Suppression of in vivo tumor growth by using a biodegradable thermosensitive hydrogel polymer containing chemotherapeutic agent. Invest New Drugs. 2010;28:284–90.

    Article  CAS  Google Scholar 

  174. Kang GD, Cheon SH, Song SC. Controlled release of doxorubicin from thermosensitive poly(organophosphazene) hydrogels. Int J Pharm. 2006;319:29–36.

    Article  CAS  Google Scholar 

  175. Han T-S, Hur K, Choi B, Lee J-Y, Byeon S-J, Min J, et al. Improvement of anti-cancer drug efficacy via thermosensitive hydrogel in peritoneal carcinomatosis in gastric cancer. Oncotarget. 2017;8:108848–58.

    Article  Google Scholar 

  176. Cho JK, Hong JM, Han T, Yang HK, Song SC. Injectable and biodegradable poly(organophosphazene) hydrogel as a delivery system of docetaxel for cancer treatment. J Drug Target. 2013;21:564–73.

    Article  CAS  Google Scholar 

  177. Cho JK, Chun C, Kuh HJ, Song SC. Injectable poly(organophosphazene)-camptothecin conjugate hydrogels: synthesis, characterization, and antitumor activities. Eur J Pharm Biopharm. 2012;81:582–90.

    Article  CAS  Google Scholar 

  178. Kim JH, Lee JH, Kim KS, Na K, Song SC, Lee J, et al. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts. Arch Pharm Res. 2013;36:94–101.

    Article  CAS  Google Scholar 

  179. Chun CJ, Lee SM, Kim SY, Yang HK, Song SC. Thermosensitive poly(organophosphazene)-paclitaxel conjugate gels for antitumor applications. Biomaterials. 2009;30:2349–60.

    Article  CAS  Google Scholar 

  180. Cho JK, Hong KY, Park JW, Yang HK, Song SC. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly(organophosphazene) hydrogel. J Drug Target. 2011;19:270–80.

    Article  CAS  Google Scholar 

  181. Zhang JX, Qiu LY, Wu XL, Jin Y, Zhu KJ. Temperature-triggered nanosphere formation through self-assembly of amphiphilic polyphosphazene. Macromol Chem Phys. 2006;207:1289–96.

    Article  CAS  Google Scholar 

  182. Jian XZ, Qiu LY, Jin Y, Kang JZ. Thermally responsive polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl glycinate as side groups: polymer synthesis, characterization, and in vitro drug release study. J Biomed Mater Res A. 2006;76:773–80.

    Google Scholar 

  183. Qiu LY, Wu XL, Jin Y. Doxorubicin-loaded polymeric micelles based on amphiphilic polyphosphazenes with poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) and ethyl glycinate as side groups: synthesis, preparation and in vitro evaluation. Pharm Res. 2009;26:946–57.

    Article  CAS  Google Scholar 

  184. Couffin-Hoarau AC, Leroux JC. Report on the use of poly(organophosphazenes) for the design of stimuli-responsive vesicles. Biomacromol. 2004;5:2082–7.

    Article  CAS  Google Scholar 

  185. Salinas Y, Kneidinger M, Fornaguera C, Borrós S, Brüggemann O, Teasdale I. Dual stimuli-responsive polyphosphazene-based molecular gates for controlled drug delivery in lung cancer cells. RSC Adv. 2020;10:27305–14.

    Article  CAS  Google Scholar 

  186. Wei X, Chen H, Tham HP, Zhang N, Xing P, Zhang G, et al. Combined photodynamic and photothermal therapy using cross-linked polyphosphazene nanospheres decorated with gold nanoparticles. ACS Appl Nano Mater. 2018;1:3663–72.

    Article  CAS  Google Scholar 

  187. Andrianov AK, Marin A, Martinez AP, Weidman JL, Fuerst TR. Hydrolytically degradable PEGylated polyelectrolyte nanocomplexes for protein delivery. Biomacromol. 2018;19:3467–78.

    Article  CAS  Google Scholar 

  188. Decollibus DP, Marin A, Andrianov AK. Effect of environmental factors on hydrolytic degradation of water-soluble polyphosphazene polyelectrolyte in aqueous solutions. Biomacromol. 2010;11:2033–8.

    Article  CAS  Google Scholar 

  189. Andrianov AK, Marin A, Fuerst TR. Molecular-level interactions of polyphosphazene immunoadjuvants and their potential role in antigen presentation and cell stimulation. Biomacromol. 2016;17:3732–42.

    Article  CAS  Google Scholar 

  190. Awate S, Wilson HL, Lai K, Babiuk LA, Mutwiri G. Activation of adjuvant core response genes by the novel adjuvant PCEP. Mol Immunol. 2012;51:292–303.

    Article  CAS  Google Scholar 

  191. Awate S, Wilson HL, Singh B, Babiuk LA, Mutwiri G. The adjuvant PCEP induces recruitment of myeloid and lymphoid cells at the injection site and draining lymph node. Vaccine. 2014;32:2420–7.

    Article  CAS  Google Scholar 

  192. Sadat SMA, Snider M, Garg R, Brownlie R, Littel-van Drunen, den Hurk S. Local innate responses and protective immunity after intradermal immunization with bovine viral diarrhea virus E2 protein formulated with a combination adjuvant in cattle. Vaccine. 2017;35:3466–73.

    Article  CAS  Google Scholar 

  193. Andrianov AK, Decollibus DP, Gillis HA, Kha HH, Marin A, Prausnitz MR, et al. Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci. 2009;106:18936–41.

    Article  CAS  Google Scholar 

  194. Seo BB, Park MR, Song SC. Sustained release of exendin 4 using injectable and ionic-nano-complex forming polymer hydrogel system for long-term treatment of type 2 diabetes mellitus. ACS Appl Mater Interfaces. 2019;11:15201–11.

    Article  CAS  Google Scholar 

  195. Park MR, Chun CJ, Cho CS, Song SC. Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel. Eur J Pharm Biopharm. 2010;76:179–88.

    Article  CAS  Google Scholar 

  196. Park MR, Seo BB, Song SC. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone. Biomaterials. 2013;34:1327–36.

    Article  CAS  Google Scholar 

  197. Park MR, Chun CJ, Ahn SW, Ki MH, Cho CS, Song SC. Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery. Biomaterials. 2010;31:1349–59.

    Article  CAS  Google Scholar 

  198. Ma C, Zhang X, Du C, Zhao B, He C, Li C, et al. Water-soluble cationic polyphosphazenes grafted with cyclic polyamine and imidazole as an effective gene delivery vector. Bioconjug Chem. 2016;27:1005–12.

    Article  CAS  Google Scholar 

  199. Yang Y, Xu Z, Chen S, Gao Y, Gu W, Chen L, et al. Histidylated cationic polyorganophosphazene/DNA self-assembled nanoparticles for gene delivery. Int J Pharm. 2008;353:277–82.

    Article  CAS  Google Scholar 

  200. Yang Y, Xu Z, Jiang J, Gao Y, Gu W, Chen L, et al. Poly(imidazole/DMAEA)phosphazene/ DNA self-assembled nanoparticles for gene delivery: synthesis and in vitro transfection. J Control Release. 2008;127:273–9.

    Article  CAS  Google Scholar 

  201. Luten J, Van Steenis JH, Van Someren R, Kemmink J, Schuurmans-Nieuwenbroek NME, Koning GA, et al. Water-soluble biodegradable cationic polyphosphazenes for gene delivery. J Control Release. 2003;89:483–97.

    Article  CAS  Google Scholar 

  202. Yang Y, Zhang Z, Chen L, Gu W, Li Y. Urocanic acid improves transfection efficiency of polyphosphazene with primary amino groups for gene delivery. Bioconjug Chem. 2010;21:419–26.

    Article  CAS  Google Scholar 

  203. Zhang P, Zhang Z, Yang Y, Li Y. Folate-PEG modified poly(2-(2-aminoethoxy)ethoxy)phosphazene/DNA nanoparticles for gene delivery: synthesis, preparation and in vitro transfection efficiency. Int J Pharm. 2010;392:241–8.

    Article  CAS  Google Scholar 

  204. De Wolf HK, Luten J, Snel CJ, Oussoren C, Hennink WE, Storm G. In vivo tumor transfection mediated by polyplexes based on biodegradable poly(DMAEA)-phosphazene. J Control Release. 2005;109:275–87.

    Article  Google Scholar 

  205. De Wolf HK, De Raad M, Snel C, Van Steenbergen MJ, Fens MHAM, Storm G, et al. Biodegradable poly(2-dimethylamino ethylamino)phosphazene for in vivo gene delivery to tumor cells. Effect of polymer molecular weight. Pharm Res. 2007;24:1572–80.

    Article  CAS  Google Scholar 

  206. Gao M, Zhu X, Wu L, Qiu L. Cationic polyphosphazene vesicles for cancer immunotherapy by efficient in vivo cytokine IL-12 plasmid delivery. Biomacromol. 2016;17:2199–209.

    Article  CAS  Google Scholar 

  207. Hsu WH, Sánchez-Gómez P, Gomez-Ibarlucea E, Ivanov DP, Rahman R, Grabowska AM, et al. Structure-optimized interpolymer polyphosphazene complexes for effective gene delivery against glioblastoma. Adv Ther. 2019;2:1800126.

    Article  Google Scholar 

  208. Kim YM, Park MR, Song SC. Injectable polyplex hydrogel for localized and long-term delivery of siRNA. ACS Nano. 2012;6:5757–66.

    Article  CAS  Google Scholar 

  209. Kim YM, Kim CH, Song SC. Injectable ternary nanocomplex hydrogel for long-term chemical drug/gene dual delivery. ACS Macro Lett. 2016;5:297–300.

    Article  CAS  Google Scholar 

  210. Kim YM, Song SC. Targetable micelleplex hydrogel for long-term, effective, and systemic siRNA delivery. Biomaterials. 2014;35:7970–7.

    Article  CAS  Google Scholar 

  211. Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, et al. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl Bio Mater. 2022;5:5015–40.

    Article  CAS  Google Scholar 

  212. Palmer CD, Ninković J, Prokopowicz ZM, Mancuso CJ, Marin A, Andrianov AK, et al. The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells. Biomaterials. 2014;35:8876–86.

    Article  CAS  Google Scholar 

  213. Payne LG, Nest GV, Barshfeld GL, Siber GR, Gupta RK, Jenkins SA. PCPP as a parenteral adjuvant for diverse antigens. Dev Biol Stand. 1998;92:79–87.

    CAS  Google Scholar 

  214. Andrianov AK, Marin A, Wang R, Karauzum H, Chowdhury A, Agnihotri P, et al. Supramolecular assembly of Toll-like receptor 7/8 agonist into multimeric water-soluble constructs enables superior immune stimulation in vitro and in vivo. ACS Appl Bio Mater. 2020;3:3187–95.

    Article  CAS  Google Scholar 

  215. Dar A, Lai K, Dent D, Potter A, Gerdts V, Babiuk LA, et al. Administration of poly[di(sodium carboxylatoethylphenoxy)]phosphazene (PCEP) as adjuvant activated mixed Th1/Th2 immune responses in pigs. Vet Immunol Immunopathol. 2012;146:289–95.

    Article  CAS  Google Scholar 

  216. Mutwiri G, Benjamin P, Soita H, Townsend H, Yost R, Roberts B, et al. Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine. 2007;25:1204–13.

    Article  CAS  Google Scholar 

  217. Garlapati S, Eng NF, Wilson HL, Buchanan R, Mutwiri GK, Babiuk LA, et al. PCPP (poly[di(carboxylatophenoxy)-phosphazene]) microparticles co-encapsulating ovalbumin and CpG oligo-deoxynucleotides are potent enhancers of antigen specific Th1 immune responses in mice. Vaccine. 2010;28:8306–14.

    Article  CAS  Google Scholar 

  218. Valencia SM, Zacharia A, Marin A, Matthews RL, Wu CK, Myers B, et al. Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Hum Vaccin Immunother. 2021;17:2748–61.

    Article  CAS  Google Scholar 

  219. Park KH, Song SC. A thermo-sensitive poly(organophosphazene) hydrogel used as an extracellular matrix for artificial pancreas. J Biomater Sci Polym Ed. 2005;16:1421–31.

    Article  CAS  Google Scholar 

  220. Wang D, Hu Y, Meng L, Wang X, Lu Q. One-pot synthesis of fluorescent and cross-linked polyphosphazene nanoparticles for highly sensitive and selective detection of dopamine in body fluids. RSC Adv. 2015;5:92762–8.

    Article  CAS  Google Scholar 

  221. Wang Z, Hu M, Hu S, Han J, Wang Z, Chen Y, et al. Facile one-pot synthesis of multifunctional polyphosphazene nanoparticles as multifunctional platform for tumor imaging. Anal Bioanal Chem. 2018;410:3723–30.

    Article  CAS  Google Scholar 

  222. Chang F, Huang X, Wei H, Chen K, Shan C, Tang X. Intrinsically fluorescent hollow spheres based on organic-inorganic hybrid polyphosphazene material: synthesis and application in drug release. Mater Lett. 2014;125:128–31.

    Article  CAS  Google Scholar 

  223. Bouché M, Pühringer M, Iturmendi A, Amirshaghaghi A, Tsourkas A, Teasdale I, et al. Activatable hybrid polyphosphazene-AuNP nanoprobe for ROS detection by bimodal PA/CT imaging. ACS Appl Mater Interfaces. 2019;11:28648–56.

    Article  Google Scholar 

  224. Kim J, Silva AB, Hsu JC, Maidment PSN, Shapira N, Noël PB, et al. Radioprotective garment-inspired biodegradable polymetal nanoparticles for enhanced CT contrast production. Chem Mater. 2020;32:381–91.

    Article  CAS  Google Scholar 

  225. Zhang ZQ, Song SC. Multiple hyperthermia-mediated release of TRAIL/SPION nanocomplex from thermosensitive polymeric hydrogels for combination cancer therapy. Biomaterials. 2017;132:16–27.

    Article  CAS  Google Scholar 

  226. Hu Y, Meng L, Niu L, Lu Q. Facile synthesis of superparamagnetic Fe3O 4@polyphosphazene@Au shells for magnetic resonance imaging and photothermal therapy. ACS Appl Mater Interfaces. 2013;5:4586–91.

    Article  CAS  Google Scholar 

  227. Kim JI, Chun CJ, Kim B, Hong JM, Cho JK, Lee SH, et al. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials. 2012;33:218–24.

    Article  CAS  Google Scholar 

  228. Il Kim J, Lee BS, Chun CJ, Cho JK, Kim SY, Song SC. Long-term theranostic hydrogel system for solid tumors. Biomaterials. 2012;33:2251–9.

    Article  Google Scholar 

  229. Xu LC, Chen C, Zhu J, Tang M, Chen A, Allcock HR, et al. New cross-linkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses. J Biomed Mater Res B Appl Biomater. 2020;108:3250–60.

    Article  CAS  Google Scholar 

  230. Bates MC, Yousaf A, Sun L, Barakat M, Kueller A. Translational research and early favorable clinical results of a novel polyphosphazene (polyzene-F) nanocoating. Regen Eng Transl Med. 2019;5:341–53.

    Article  CAS  Google Scholar 

  231. Selin V, Albright V, Ankner JF, Marin A, Andrianov AK, Sukhishvili SA. Biocompatible nanocoatings of fluorinated polyphosphazenes through aqueous assembly. ACS Appl Mater Interfaces. 2018;10:9756–64.

    Article  CAS  Google Scholar 

  232. Albright V, Marin A, Kaner P, Sukhishvili SA, Andrianov AK. New family of water-soluble sulfo-fluoro polyphosphazenes and their assembly within hemocompatible nanocoatings. ACS Appl Bio Mater. 2019;2:3897–906.

    Article  CAS  Google Scholar 

  233. Tang M, Chen C, Zhu J, Allcock HR, Siedlecki CA, Xu LC. Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioact Mater. 2021;6:447–59.

    CAS  Google Scholar 

  234. Allcock HR, Pucher SR, Fitzpatrick RJ, Rashid K. Antibacterial activity and mutagenicity studies of water-soluble phosphazene high polymers. Biomaterials. 1992;13:857–62.

    Article  CAS  Google Scholar 

  235. Xu LC, Li Z, Tian Z, Chen C, Allcock HR, Siedlecki CA. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomater. 2018;67:87–98.

    Article  CAS  Google Scholar 

  236. Lutzke A, Tapia JB, Neufeld MJ, Reynolds MM. Sustained nitric oxide release from a tertiary S-nitrosothiol-based polyphosphazene coating. ACS Appl Mater Interfaces. 2017;9:2104–13.

    Article  CAS  Google Scholar 

  237. Gettleman L. Polypohosphazene fluoroelastomer for denture liners and facial prosthetics. Phosphorus, Sulfur and Silicon and Related Elements. 1999;144–146:205–8.

    Article  Google Scholar 

  238. Razavi R, Khan Z, Haeberle CB, Beam D. Clinical applications of a polyphosphazene-based resilient denture liner. J Prosthodont. 1993;2:224–7.

    Article  CAS  Google Scholar 

  239. Ni Z, Yu H, Wang L, Liu X, Shen D, Chen X, et al. Polyphosphazene and non-catechol-based antibacterial injectable hydrogel for adhesion of wet tissues as wound dressing. Adv Healthc Mater. 2022;11:2101421.

    Article  CAS  Google Scholar 

  240. Ucan D, Kanik FE, Karatas Y, Toppare L. Synthesis and characterization of a novel polyphosphazene and its application to biosensor in combination with a conducting polymer. Sens Actuators B Chem. 2014;201:545–54.

    Article  CAS  Google Scholar 

  241. Aydın M, Aydın EB, Sezgintürk MK. Electrochemical immunosensor for CDH22 biomarker based on benzaldehyde substituted poly(phosphazene) modified disposable ITO electrode: a new fabrication strategy for biosensors. Biosens Bioelectron. 2019;126:230–9.

    Article  Google Scholar 

  242. Veronese FM, Marsilio F, Lora S, Caliceti P, Passi P, Orsolini P. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials. 1999;20:91–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from NIH/NIAMS T32 ARO79114 (to CTL), Building Infrastructure Leading to Diversity (BUILD) TL4GM118971 (to CTL), and Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barua, M., Teniola, O.R. & Laurencin, C.T. Biodegradable Polyphosphazenes for Biomedical Applications. Regen. Eng. Transl. Med. (2023). https://doi.org/10.1007/s40883-023-00318-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-023-00318-w

Keywords

Navigation