Skip to main content
Log in

Hemocompatibility of All-trans Retinoic Acid–Loaded Citrate Polymer Coatings for Vascular Stents

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Current strategies implementing drug-eluting polymer stent coatings fail to fully address the lasting effects of endothelial suppression which ultimately result in delayed reendothelialization and thrombogenic complications. The present study investigates the in vitro hemocompatibility of all-trans retinoic acid–loaded poly(1,8-octanediol-co-citrate) coatings (AtRA-POC coatings) for advanced intravascular stent technology. The ability of these materials to support endothelial restoration via migration and proliferation while inhibiting smooth muscle cell growth is also explored.

Methods

Using in vitro models, the hemocompatibility of AtRA-loaded POC-coated cobalt chromium (CoCr) vascular stents was evaluated in terms of platelet and inflammatory activity. Platelet activity was quantified by platelet adhesion and platelet activation, further supported by SEM visualization. Inflammatory activity was quantified by the production of proinflammatory cytokines by THP1 monocytes. Lastly, in vitro wound healing and 5-ethynyl-2′-deoxyuridine (EdU) and PicoGreen DNA assays were used in quantitating endothelial and smooth muscle cell migration and proliferation.

Results

Experimental examinations of platelet adhesion and activation demonstrate significant reductions in the platelet response to POC-coated AtRA-loaded stents when compared to bare CoCr stents. Such findings reveal AtRA-POC coatings to have significantly improved hemocompatibility compared to that of bare metal stents and at least as good as that of POC alone. Similarly, in reference to LPS-stimulated controls, human monocyte-like THP1 cells in culture with AtRA-POC-CoCr stents for 24 h showed reduced detection of proinflammatory cytokines, comparable to that of bare CoCr and untreated controls. This result supports AtRA-POC coatings as possessing limited immunological potential. Observations from in vitro endothelial and smooth muscle cell investigations demonstrate the ability of the drug AtRA to allow cell processes involved in restoration of the endothelium while inhibiting smooth muscle cell processes.

Conclusion

This study demonstrates AtRA-loaded POC coatings are hemocompatible and noninflammatory, and provide a promising strategy in enhancing vascular stent techniques and clinical integration. Possessing hemocompatibility and immunological compatibility that is at least as good as bare metal stents as clinical standards supports the use of AtRA-POC coatings for vascular applications. Additionally, selectively reducing smooth muscle cell proliferation while supporting endothelial cell proliferation and migration further demonstrates the potential of these materials in significantly improving the state of vascular stent technology in the area of stent thrombosis and neointimal hyperplasia.

Lay Summary

Hemocompatibility and support of endothelial cell functions are essential for advancing drug-eluting stent technology. Since vascular stents will be directly in contact with blood, the materials used for these devices must be compatible with blood components and associated cells to prevent clotting and proinflammatory events. Additionally, ideal strategies must support the restoration of surrounding vascular tissue which becomes damaged during stent implantation and is at the crux of addressing the current challenges of drug-eluting stent approaches. Thus, the present study investigates the in vitro hemocompatibility and effects on endothelial healing of all-trans retinoic acid–loaded poly(1,8-octanediol-co-citrate) coatings for advanced intravascular stent technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data available upon request.

Code Availability

Not applicable.

References

  1. Gossart A, Letourneur D, Gand A, Regnault V, Ben Mlouka MA, Cosette P, Pauthe E, Ollivier V, Santerre JP. Mitigation of monocyte driven thrombosis on cobalt chrome surfaces in contact with whole blood by thin film polar/hydrophobic/ionic polyurethane coatings. Biomaterials. 2019;217:119306.

    Article  CAS  Google Scholar 

  2. Marti A. Cobalt-base alloys used in bone surgery. Injury. 2000;31:D18–21.

    Article  Google Scholar 

  3. Ollivier V, Roques C, Receveur N, Gratz M, Feldman L, Letourneur D, Gachet C, Mangin PH, Jandrot-Perrus M. Bioreactivity of stent material: activation of platelets, coagulation, leukocytes and endothelial cell dysfunction in vitro. Platelets. 2016;28(6):529–39.

    Article  Google Scholar 

  4. Thiruppathi E, Larson MK, Mani G. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies. Langmuir. 2014;31(1):358–70.

    Article  Google Scholar 

  5. Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. J Thorac Dis. 2016;8(10):E1150–62.

    Article  Google Scholar 

  6. Stevens JR, Zamani A, Osborne JIA, Zamani R, Akrami M. Critical evaluation of stents in coronary angioplasty: a systematic review. Biomed Eng Online. 2021;20(1):46–46.

    Article  Google Scholar 

  7. Marx SO, Totary-Jain H, Marks AR. Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv. 2011;4(1):104–11.

    Article  CAS  Google Scholar 

  8. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349(14):1315–23.

    Article  CAS  Google Scholar 

  9. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350(3):221–31.

    Article  CAS  Google Scholar 

  10. Kounis NG, Koniari I, Roumeliotis A, Tsigkas G, Soufras G, Grapsas N, Davlouros P, Hahalis G. Thrombotic responses to coronary stents, bioresorbable scaffolds and the Kounis hypersensitivity-associated acute thrombotic syndrome. J Thorac Dis. 2017;9(4):1155–64.

    Article  Google Scholar 

  11. Schubert SY, Benarroch A, Ostvang J, Edelman ER. Regulation of endothelial cell proliferation by primary monocytes. Arterioscler Thromb Vasc Biol. 2008;28(1):97–104.

    Article  CAS  Google Scholar 

  12. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30.

    Article  CAS  Google Scholar 

  13. Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol. 2018;6:99–99.

    Article  Google Scholar 

  14. Motlagh D, Allen J, Hoshi R, Yang J, Lui K, Ameer G. Hemocompatibility evaluation of poly(diol citrate)in vitro for vascular tissue engineering. J Biomed Mater Res, Part A. 2007;82A(4):907–16.

    Article  CAS  Google Scholar 

  15. Zailani MZ, Ismail AF, Sheikh Abdul Kadir SH, Othman MHD, Goh PS, Hasbullah H, Abdullah MS, Ng BC, Kamal F. Hemocompatibility evaluation of poly(1,8-octanediol citrate) blend polyethersulfone membranes. J Biomed Mater Res Part A. 2017;105(5):1510–20.

    Article  CAS  Google Scholar 

  16. Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials. 2006;27(9):1889–98.

    Article  CAS  Google Scholar 

  17. Allen J, Khan S, Lapidos KA, Ameer G, Toward engineering a human neoendothelium with circulating progenitor cells. STEM CELLS. p. N/A-N/A.; 2009

  18. Tran RT, Yang J, Ameer GA. Citrate-based biomaterials and their applications in regenerative engineering. Annu Rev Mater Res. 2015;45:277–310.

    Article  CAS  Google Scholar 

  19. Yang J, Webb AR, Ameer GA. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater. 2004;16(6):511–6.

    Article  CAS  Google Scholar 

  20. Johst U, Betsch A, Wiskirchen J, Schöber W, Vonthein R, Rinkert N, Kehlbach R, Claussen CD, Duda SH. All-trans and 9-cis retinoid acids inhibit proliferation, migration, and synthesis of extracellular matrix of human vascular smooth muscle cells by inducing differentiation in vitro. J Cardiovasc Pharmacol. 2003;41(4):526–35.

    Article  CAS  Google Scholar 

  21. Sugawara A. Effects of retinoids on vasculatures. J Endocrinol Thyroid Res, 2017; 2(3).

  22. Zhang J, Deng B, Jiang X, Cai M, Liu N, Zhang S, Tan Y, Huang G, Jin W, Liu B, Liu S. All-trans-retinoic acid suppresses neointimal hyperplasia and inhibits vascular smooth muscle cell proliferation and migration via activation of AMPK signaling pathway. Front Pharmacol. 2019;10:485–485.

    Article  CAS  Google Scholar 

  23. Axel DI, Frigge A, Dittmann J, Runge H, Spyridopoulos I, Riessen R, Viebahn R, Karsch KR. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc Res. 2001;49(4):851–62.

    Article  CAS  Google Scholar 

  24. Leville CD, Dassow MS, Seabrook GR, Jean-Claude JM, Towne JB, Cambria RA. All-trans-retinoic acid decreases vein graft intimal hyperplasia and matrix metalloproteinase activity in vivo. J Surg Res. 2000;90(2):183–90.

    Article  CAS  Google Scholar 

  25. Bouriez D, Giraud J, Gronnier C, Varon C. Efficiency of all-trans retinoic acid on gastric cancer: a narrative literature review. Int J Mol Sci. 2018;19(11).

  26. Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current trends in ATRA delivery for cancer therapy. Pharmaceutics, 2020;12(8).

  27. Maeda Y, Yamaguchi T, Hijikata Y, Tanaka M, Hirase C, Takai S, Morita Y, Sano T, Miyatake J, Tatsumi Y, Kanamaru A. Clinical efficacy of all-trans retinoic acid for treating adult T cell leukemia. J Cancer Res Clin Oncol. 2008;134(6):673–7.

    Article  CAS  Google Scholar 

  28. Nijhof IS, Groen RW, Lokhorst HM, van Kessel B, Bloem AC, van Velzen J, de Jong-Korlaar R, Yuan H, Noort WA, Klein SK, Martens AC, Doshi P, Sasser K, Mutis T, van de Donk NW. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia. 2015;29(10):2039–49.

    Article  CAS  Google Scholar 

  29. Xia L, Li R, Wang Y, Lin Z, Zheng J, Li X, Lu Q, Zhang J, Jin H, Fu L, Zhang X, Liu Y, Yang S, Xiao F, Gao XH. Efficacy, safety, and cost-effectiveness of all-trans retinoic acid/clobetasol propionate compound ointment in the treatment of mild to moderate psoriasis vulgaris: a randomized, single-blind, multicenter clinical trial. Dermatol Ther. 2018;31(5):e12632.

    Article  Google Scholar 

  30. Gregory EK, Webb A, Vercammen JM, Kelly ME, Akar B, van Lith R, Bahnson EM, Jiang W, Ameer GA, Kibbe MR. Inhibiting intimal hyperplasia in prosthetic vascular grafts via immobilized all-trans retinoic acid. J Control Release. 2018;274:69–80.

  31. Gregory EK, Webb AR, Vercammen JM, Flynn ME, Ameer GA, Kibbe MR. Periadventitial atRA citrate-based polyester membranes reduce neointimal hyperplasia and restenosis after carotid injury in rats. Am J Physiol Heart Circ Physiol. 2014;307(10):H1419–29.

    Article  CAS  Google Scholar 

  32. Jones T, Zhang B, Major S, Webb A. All-trans retinoic acid eluting poly(diol citrate) wafers for treatment of glioblastoma. J Biomed Mater Res B Appl Biomater. 2020;108(3):619–28.

    Article  CAS  Google Scholar 

  33. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res. 2016;118(9):1392–408.

    Article  CAS  Google Scholar 

  34. Grunkemeier JM, Tsai WB, Horbett TA. Hemocompatibility of treated polystyrene substrates: contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res. 1998;41(4):657–70.

    Article  CAS  Google Scholar 

  35. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA. Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials. 2006;27(24):4315–24.

    Article  CAS  Google Scholar 

  36. Axel DI, Kunert W, Göggelmann C, Oberhoff M, Herdeg C, Küttner A, Wild DH, Brehm BR, Riessen R, Köveker G, Karsch KR. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation. 1997;96(2):636–45.

    Article  CAS  Google Scholar 

  37. Wakino S, Kintscher U, Kim S, Jackson S, Yin F, Nagpal S, Chandraratna RA, Hsueh WA, Law RE. Retinoids inhibit proliferation of human coronary smooth muscle cells by modulating cell cycle regulators. Arterioscler Thromb Vasc Biol. 2001;21(5):746–51.

    Article  CAS  Google Scholar 

  38. Wijeyeratne YD, Heptinstall S. Anti-platelet therapy: ADP receptor antagonists. Br J Clin Pharmacol. 2011;72(4):647–57.

    Article  CAS  Google Scholar 

  39. Sondeen JL, de Guzman R, Amy Polykratis I, Dale Prince M, Hernandez O, Cap AP, Dubick MA. Comparison between human and porcine thromboelastograph parameters in response to ex-vivo changes to platelets, plasma, and red blood cells. Blood Coagul Fibrinolysis. 2013;24(8):818–29.

    Article  Google Scholar 

  40. Vollmar B, Slotta JE, Nickels RM, Wenzel E, Menger MD. Comparative analysis of platelet isolation techniques for the in vivo study of the microcirculation. Microcirculation. 2003;10(2):143–52.

    CAS  Google Scholar 

  41. von Brühl M-L, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M, Khandoga A, Tirniceriu A, Coletti R, Köllnberger M, Byrne RA, Laitinen I, Walch A, Brill A, Pfeiler S, Manukyan D, Braun S, Lange P, Riegger J, Ware J, Eckart A, Haidari S, Rudelius M, Schulz C, Echtler K, Brinkmann V, Schwaiger M, Preissner KT, Wagner DD, Mackman N, Engelmann B, Massberg S. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–35.

    Article  Google Scholar 

  42. Swystun LL, Liaw PC. The role of leukocytes in thrombosis. Blood. 2016;128(6):753–62.

    Article  CAS  Google Scholar 

  43. Busnelli M, Froio A, Bacci ML, Giunti M, Cerrito MG, Giovannoni R, Forni M, Gentilini F, Scagliarini A, Deleo G, Benatti C, Leone BE, Biasi GM, Lavitrano M. Pathogenetic role of hypercholesterolemia in a novel preclinical model of vascular injury in pigs. Atherosclerosis. 2009;207(2):384–90.

    Article  CAS  Google Scholar 

  44. Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation. 2002;105(25):2974–80.

    Article  Google Scholar 

  45. Eppihimer MJ, Sushkova N, Grimsby JL, Efimova N, Kai W, Larson S, Forsyth B, Huibregtse BA, Dawkins KD, Wilson GJ, Granada JF. Impact of stent surface on thrombogenicity and vascular healing. Circ Cardiovasc Interv. 2013;6(4):370–7.

    Article  CAS  Google Scholar 

  46. Pesarini G, Amoruso A, Ferrero V, Bardelli C, Fresu LG, Perobelli L, Scappini P, De Luca G, Brunelleschi S, Vassanelli C, Ribichini F. Cytokines release inhibition from activated monocytes, and reduction of in-stent neointimal growth in humans. Atherosclerosis. 2010;211(1):242–8.

    Article  CAS  Google Scholar 

  47. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular inflammation and repair: implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc Interv. 2011;4(10):1057–66.

    Article  Google Scholar 

  48. Shimaya Y, Shimada M, Shutto Y, Fujita T, Murakami R, Nakamura N, Yamabe H, Okumura K. Thrombin stimulates synthesis of macrophage colony-stimulating factor, granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor by human proximal tubular epithelial cells in culture. Nephron extra. 2012;2(1):1–8.

    Article  Google Scholar 

  49. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45.

    Article  CAS  Google Scholar 

  50. Schutte RJ, Parisi-Amon A, Reichert WM. Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res, Part A. 2009;88(1):128–39.

    Article  Google Scholar 

  51. Cornelissen A, Vogt FJ. The effects of stenting on coronary endothelium from a molecular biological view: time for improvement? J Cell Mol Med. 2019;23(1):39–46.

    Article  Google Scholar 

  52. Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, Gold HK, Virmani R. Pathological correlates of late drug-eluting stent thrombosis. Circulation. 2007;115(18):2435–41.

    Article  Google Scholar 

  53. Evans CE, Iruela-Arispe ML, Zhao Y-Y. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol. 2021;191(1):52–65.

    Article  CAS  Google Scholar 

  54. Wang X, Fang F, Ni Y, Yu H, Ma J, Deng L, Li C, Shen Y, Liu X. The combined contribution of vascular endothelial cell migration and adhesion to stent re-endothelialization. Front Cell Dev Biol. 2021;9:641382–641382.

    Article  Google Scholar 

  55. Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 2014;21(3):224–8.

    Article  Google Scholar 

  56. Hayashi S-I, Yamamoto A, You F, Yamashita K, Ikegame Y, Tawada M, Yoshimori T, Shimizu S, Nakashima S. The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. Am J Pathol. 2009;175(5):2226–34.

    Article  CAS  Google Scholar 

  57. Ammann KR, DeCook KJ, Li M, Slepian MJ. Migration versus proliferation as contributor to in vitro wound healing of vascular endothelial and smooth muscle cells. Exp Cell Res. 2019;376(1):58–66.

    Article  CAS  Google Scholar 

  58. Rodriguez-Garcia B, Bureau C, Barakat AI. eG coated stents exhibit enhanced endothelial wound healing characteristics. Cardiovasc Eng Technol. 2021.

  59. Saito A, Sugawara A, Uruno A, Kudo M, Kagechika H, Sato Y, Owada Y, Kondo H, Sato M, Kurabayashi M, Imaizumi M, Tsuchiya S, Ito S. All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology. 2007;148(3):1412–23.

    Article  CAS  Google Scholar 

  60. Li H, Zhang LJ, Chen BH, Zhou X, Su K, Shi WT, Wu JZ, Yu H, Wei L. Inhibitory effect of paclitaxel on endothelial cell adhesion and migration. Pharmacology. 2010;85(3):136–45.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Institutes of Health R01, grant number R01HL130493.

Author information

Authors and Affiliations

Authors

Contributions

Project conceptualization: Antonio Webb and Josephine Allen; formal analysis and investigation: Heather Ursino, Bisheng Zhang, and Christopher Ludtka; writing—original draft preparation: Heather Ursino and Josephine Allen; writing—review and editing: all authors; funding acquisitions: Antonio Webb and Josephine Allen; supervision: Antonio Webb and Josephine Allen.

Corresponding author

Correspondence to Josephine B. Allen.

Ethics declarations

Ethics Approval

The study includes experimentation with porcine whole-blood components. All animal procedures to collect whole blood were performed in accordance with the Institutional Animal Care and Use Committee (IACUC) and the University of Florida’s Animal Care Services (ACS) and policies.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

Author Josephine Allen holds a position on the editorial board of the Regenerative Engineering and Translational Medicine journal. The other authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Future Works

Future studies may incorporate flow parameters and signals of relevant surrounding cell types to better replicate in situ conditions for improved translatability to clinical applications. Other variables like injury severity, drug dosage, and further stent surface characterization may also be explored due to known complexities involving these parameters.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 572 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ursino, H., Zhang, B., Ludtka, C. et al. Hemocompatibility of All-trans Retinoic Acid–Loaded Citrate Polymer Coatings for Vascular Stents. Regen. Eng. Transl. Med. 8, 579–592 (2022). https://doi.org/10.1007/s40883-022-00257-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-022-00257-y

Keywords

Navigation