Skip to main content
Log in

Rouquier dimension is Krull dimension for normal toric varieties

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove that for any normal toric variety, the Rouquier dimension of its bounded derived category of coherent sheaves is equal to its Krull dimension. Our proof uses the coherent-constructible correspondence to translate the problem into the study of Rouquier dimension for certain categories of constructible sheaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are not sure if this list is exhaustive.

  2. For completeness, we give the reference to the stacky case. The original proof (for schemes) is due to Rouquier [29, Proposition 7.17].

References

  1. Bai, S., Côté, L.: On the Rouquier dimension of wrapped Fukaya categories and a conjecture of Orlov. Compositio Math. 159(3), 437–487 (2023)

    Article  MathSciNet  Google Scholar 

  2. Ballard, M.R., Duncan, A., McFaddin, P.K.: The toric Frobenius morphism and a conjecture of Orlov. Eur. J. Math. 5(3), 640–645 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ballard, M., Duncan, A., McFaddin, P.: Generation and the toric Frobenius (in preparation)

  4. Ballard, M., Favero, D.: Hochschild dimensions of tilting objects. Int. Math. Res. Not. IMRN 2012(11), 2607–2645 (2012)

    MathSciNet  Google Scholar 

  5. Ballard, M., Favero, D., Katzarkov, L.: Orlov spectra: bounds and gaps. Invent. Math. 189(2), 359–430 (2012)

    Article  MathSciNet  Google Scholar 

  6. Ballard, M., Favero, D., Katzarkov, L.: A category of kernels for equivariant factorizations, II: further implications. J. Math. Pures Appl. 102(4), 702–757 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. J. Reine Angew. Math. 746, 235–303 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bondal, A.: Derived categories of toric varieties. In: Convex and Algebraic Geometry. Oberwolfach Reports, vol. 3, pp. 284–286. Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach (2006)

  9. Brown, M.K., Sayrafi, M.: A short resolution of the diagonal for smooth projective toric varieties of Picard rank 2 (2022). arXiv:2208.00562

  10. Cooke, G.E., Finney, R.L.: Homology of Cell Complexes. Princeton University Press, Princeton (1967)

    Book  Google Scholar 

  11. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

  12. Elagin, A., Xu, J., Zhang, S.: On cyclic strong exceptional collections of line bundles on surfaces. Eur. J. Math. 7(1), 69–115 (2021)

    Article  MathSciNet  Google Scholar 

  13. Fang, B., Liu, C.-C.M., Treumann, D., Zaslow, E.: A categorification of Morelli’s theorem. Invent. Math. 186(1), 79–114 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fang, B., Liu, C.-C.M., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry for toric varieties. Adv. Math. 229(3), 1875–1911 (2012)

    Article  MathSciNet  Google Scholar 

  15. Fang, B., Liu, C.-C.M., Treumann, D., Zaslow, E.: The coherent-constructible correspondence for toric Deligne–Mumford stacks. Int. Math. Res. Not. IMRN 2014(4), 914–954 (2014)

  16. Favero, D., Huang, J.: Homotopy path algebras (2022). arXiv:2205.03730

  17. Geraschenko, A., Satriano, M.: Toric stacks I: The theory of stacky fans. Trans. Amer. Math. Soc. 367(2), 1033–1071 (2015)

  18. Ganatra, S., Pardon, J., Shende, V.: Microlocal Morse theory of wrapped Fukaya categories (2018). arXiv:1809.08807

  19. Hanlon, A., Hicks, J., Lazarev, O.: Relating categorical dimensions in topology and symplectic geometry (2023). arXiv:2308.13677

  20. Hanlon, A., Hicks, J., Lazarev, O.: Resolutions of toric subvarieties by lines bundles and applications (2023). arXiv:2303.03763

  21. Huang, J., Zhou, P.: Variation of GIT and variation of Lagrangian skeletons II: Quasi-symmetric case. Adv. Math. 408(A), 108597 (2022)

  22. Kawamata, Y.: Semi-orthogonal decomposition of a derived category of a 3-fold with an ordinary double point. In: Abban, H., et al. (eds.) Recent Developments in Algebraic Geometry. London Mathematical Society Lecture Note Series, vol. 478, pp. 183–215. Cambridge University Press, Cambridge (2022)

    Chapter  Google Scholar 

  23. Kuwagaki, T.: The nonequivariant coherent-constructible correspondence for toric stacks. Duke Math. J. 169(11), 2125–2197 (2020)

    Article  MathSciNet  Google Scholar 

  24. Nadler, D.: Wrapped microlocal sheaves on pairs of pants (2016). arXiv:1604.00114

  25. Olander, N.: The Rouquier dimension of quasi-affine schemes (2021). arXiv:2108.12005

  26. Orlov, D.: Remarks on generators and dimensions of triangulated categories. Moscow Math. J. 9(1), 153–159 (2009)

    Article  MathSciNet  Google Scholar 

  27. Polo, P.: On Cohen–Macaulay posets, Koszul algebras and certain modules associated to Schubert varieties. Bull. London Math. Soc. 27(5), 425–434 (1995)

  28. Pirozhkov, D.: Rouquier dimension of some blow-ups. Eur. J. Math. 9(2), Art. No. 45 (2023)

  29. Rouquier, R.: Dimensions of triangulated categories. J. K-theory 1(2), 193–256 (2008)

    Article  MathSciNet  Google Scholar 

  30. Shende, V.: Toric mirror symmetry revisited. C. R. Math. Acad. Sci. Paris 360, 751–759 (2022)

    MathSciNet  Google Scholar 

  31. Yanagawa, K.: Derived category of squarefree modules and local cohomology with monomial ideal support. J. Math. Soc. Japan 56(1), 289–308 (2004)

  32. Yanagawa, K.: Dualizing complex of the incidence algebra of a finite regular cell complex. Illinois J. Math. 49(4), 1221–1243 (2005)

    Article  MathSciNet  Google Scholar 

  33. Yang, S.: A note on the Rouquier dimensions of product varieties. J. Algebra Appl. 15(4), Art. No. 1650065 (2016)

Download references

Acknowledgements

We thank Andrew Hanlon for notifying us about [20] and providing us with an early draft with an independent proof of Theorem 1.2 found therein. We are also grateful to Evgeny Shinder and Martin Kalck for providing us with the reference [22]. We thank Matt Ballard and Alex Duncan for their excellent explanations of the results in [3] and additional discussions at the Banff International Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Huang is supported by a Pacific Institute for the Mathematical Sciences Postdoctoral Fellowship and by NSERC through the Discovery Grant program. D. Favero is supported by NSERC through the Discovery Grant and Canada Research Chair programs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favero, D., Huang, J. Rouquier dimension is Krull dimension for normal toric varieties. European Journal of Mathematics 9, 91 (2023). https://doi.org/10.1007/s40879-023-00686-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40879-023-00686-1

Keywords

Mathematics Subject Classification

Navigation