Skip to main content
Log in

On the zeros of Weng zeta functions for Chevalley groups

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We prove that all but finitely many zeros of Weng’s zeta function for a Chevalley group defined over \({\mathbb{Q}}\) are simple and on the critical line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arthur J.: A trace formula for reductive groups. I. Terms associated to classes in G(Q). Duke Math. J. 45(4), 911–952 (1978)

    Article  MathSciNet  Google Scholar 

  2. Arthur J.: A trace formula for reductive groups. II. Applications of a truncation operator. Compos. Math. 40(1), 87–121 (1980)

    MathSciNet  MATH  Google Scholar 

  3. de Bruijn N.G.: The roots of trigonometric integrals. Duke Math. J. 17, 197–226 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  4. Friedman R., Morgan J.W.: Holomorphic principal bundles over elliptic curves. II. The parabolic construction. J. Differ. Geom. 56(2), 301–379 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Hejhal, D.A.: On a result of Selberg concerning zeros of linear combinations of L-functions. Int. Math. Res. Not. 11, 551–577 (2000)

  6. Hejhal D.A.: On the horizontal distribution of zeros of linear combinations of Euler products. C. R. Math. Acad. Sci. Paris 338(10), 755–758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York, Second printing, revised (1978)

  8. Jacquet H., Lapid E., Rogawski J.: Periods of automorphic forms. J. Am. Math. Soc. 12(1), 173–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kac V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  10. Kazakevich, V.G., Stavrova, A.K.: Subgroups normalized by the commutator group of the Levi subgroup. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 319 (2004), no. Vopr. Teor. Predst. Algebr. i Grupp. 11, 199–215, 301–302

  11. Ki H.: All but finitely many non-trivial zeros of the approximations of the Epstein zeta function are simple and on the critical line. Proc. Lond. Math. Soc. (3) 90(2), 321–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ki, H.: On the zeros of Weng’s zeta functions. Int. Math. Res. Not. IMRN 13, 2367–2393 (2010)

  13. Komori, Y.: Functional equations of Weng’s zeta functions for \({({G},{P})/{\mathbb{Q}}}\). Am. J. Math. 135(4), 1019–1038 (2013)

  14. Lagarias J.C., Suzuki M.: The Riemann hypothesis for certain integrals of Eisenstein series. J. Numb. Theory 118(1), 98–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Langlands, R.P.: Euler products. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967, Yale Mathematical Monographs, 1. Yale University Press, New Haven, Conn.-London (1971)

  16. Manivel, L.: The canonical strip phenomenon for complete intersections in homogeneous spaces. (2009). Preprint. http://arxiv.org/abs/0904.2470

  17. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) (Salerno), Univ. Salerno, pp. 367–385 (1992)

  18. Snow, D.M.: Homogeneous vector bundles. Group actions and invariant theory (Montreal, PQ, 1988). In: CMS Conference Proceedings, vol. 10, pp. 193–205. American Mathematical Society, Providence, RI (1989)

  19. Suzuki, M.: A proof of the Riemann hypothesis for the Weng zeta function of rank 3 for the rationals. In: The Conference on L-Functions, pp. 175–199. World Scientific Publication, Hackensack (2007)

  20. Suzuki, M.: The Riemann hypothesis for Weng’s zeta function of Sp(4) over \({\mathbb{Q}}\).J. Numb. Theory 129(3), 551–579. With an appendix by Lin Weng (2009)

  21. Suzuki, M., Weng, L.: Zeta functions for G 2 and their zeros. Int. Math. Res. Not. IMRN 2, 241–290 (2009)

  22. Titchmarsh, E.C.: The theory of the Riemann zeta-function, 2nd ed. The Clarendon Press Oxford University Press, New York. Edited and with a preface by D. R. Heath-Brown (1986)

  23. Weng, L.: Geometric Arithmetic: A Program. Arithmetic Geometry and Number Theory, Series in Number Theory Applications, vol. 1, pp. 211–400. World Scientific Publication, Hackensack (2006)

  24. Weng, L.: A geometric approach to L-functions. In: The Conference on L-Functions, pp. 219–370. World Scientific Publications, Hackensack (2007)

  25. Weng, L.: Symmetries and the Riemann Hypothesis. Algebraic and Arithmetic Structures of Moduli Spaces (Sapporo 2007), Advanced Studies in Pure Mathematics, vol. 58, pp. 173–223. Mathematics Society of Japan, Tokyo (2010)

  26. Weng, L.: General uniformity of zeta functions (2012). Preprint. http://arxiv.org/pdf/1209.4515.pdf

  27. Weng, L.: Parabolic Reduction, Stability and the Mass. I. Special Linear Groups, Automorphic Forms and Automorphic L-Functions, RIMS Kôkyûroku, vol. 1826, pp. 168–179. RIMS, Kyoto (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haseo Ki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ki, H., Komori, Y. & Suzuki, M. On the zeros of Weng zeta functions for Chevalley groups. manuscripta math. 148, 119–176 (2015). https://doi.org/10.1007/s00229-015-0736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0736-8

Mathematics Subject Classification

Navigation