Skip to main content
Log in

A generalization of Stein manifolds

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

A Correction to this article was published on 22 May 2023

This article has been updated

Abstract

We define and study m-Stein manifolds which are generalizations of Stein manifolds by using m-subharmonic functions on a non-compact Kähler manifold. We prove that for a non-compact weakly m-complete manifold M, it contains no compact m-local maximum set (\(=\) m-pseudoconcave set) if and only if it is m-Stein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Bianchi, F., Mongodi, S.: On minimal kernels and Levi currents on weakly complete complex manifolds. Proc. Amer. Math. Soc. 150(9), 3927–3939 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L., Kohn, J.J., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations, II. Commun. Pure Appl. Math. 38(2), 209–252 (1985)

    Article  MATH  Google Scholar 

  4. Dinew, S., Kołodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7(1), 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds. Ann. Math. 68(2), 460–472 (1958)

  6. Harz, T.: On smoothing of plurisubharmonic functions on unbounded domains (2021). arXiv:2104.14448

  7. Harz, T., Shcherbina, N., Tomassini, G.: On defining functions and cores for unbounded domains. I. Math. Z. 286(3–4), 987–1002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. IMRN 2009(16), 3098–3111 (2009)

    Article  MATH  Google Scholar 

  9. Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8(1), 87–106 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mongodi, S., Słodkowski, Z., Tomassini, G.: Weakly complete complex surfaces. Indiana Univ. Math. J. 67(2), 899–935 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Narasimhan, R.: The Levi problem for complex spaces. II. Math. Ann. 146, 195–216 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Narasimhan, R.: The Levi problem and pseudo-convex domains: a survey. Enseign. Math. 24(3–4), 161–172 (1978)

    MathSciNet  MATH  Google Scholar 

  13. Ohsawa, T.: A survey on Levi flat hypersurfaces. In: Fornæss, J.E., et al. (eds.) Complex Geometry and Dynamics. Abel SymposiaAbel Symposia, vol. 30, pp. 211–225. Springer, Cham (2015)

    Chapter  Google Scholar 

  14. Pliś, S.: The smoothing of \(m\)-subharmonic functions (2013). arXiv:1312.1906

  15. Poletsky, E.A., Shcherbina, N.: Plurisubharmonically separable complex manifolds. Proc. Amer. Math. Soc. 147(6), 2413–2424 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Richberg, R.: Stetige streng pseudokonvexe Funktionen. Math. Ann. 175, 257–286 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sadullaev, A., Abdullaev, B.: Potential theory in the class of \(m\)-subharmonic functions. Proc. Steklov Inst. Math. 279(1), 155–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sibony, N.: Levi problem in complex manifolds. Math. Ann. 371(3–4), 1047–1067 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Slodkowski, Z.: Local maximum property and \(q\)-plurisubharmonic functions in uniform algebras. J. Math. Anal. Appl. 115(1), 105–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Slodkowski, Z.: Pseudoconcave decompositions in complex manifolds. In: Rubinstein, Y.A., Shiffman, B. (eds.) Advances in Complex Geometry. Contemporary MathematicsContemporary Mathematics, vol. 735, pp. 239–259. American Mathematical Society, Providence (2019)

    Chapter  MATH  Google Scholar 

  21. Slodkowski, Z., Tomassini, G.: Minimal kernels of weakly complete spaces. J. Funct. Anal. 210(1), 125–147 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to Zbigniew Słodkowski for giving the author a sketch of the proof of Proposition 4.3 and a shorter proof given in the Remark 3.10. The author is also very thankful to him for many stimulating discussions concerning the content of the third and last section. The author sincerely thanks the anonymous referee for improving greatly the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Günyüz.

Additional information

Dedicated to Vyacheslav Pavlovich Zakharyuta on the occasion of his 85th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günyüz, O. A generalization of Stein manifolds. European Journal of Mathematics 8 (Suppl 2), 504–517 (2022). https://doi.org/10.1007/s40879-022-00584-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-022-00584-y

Keywords

Mathematics Subject Classification

Navigation