Skip to main content
Log in

The Diederich–Fornæss Exponent and Non-existence of Stein Domains with Levi-Flat Boundaries

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the Diederich–Fornæss exponent and relate it to non-existence of Stein domains with Levi-flat boundaries in complex manifolds. In particular, we prove that if the Diederich–Fornæss exponent of a smooth bounded Stein domain in an \(n\)-dimensional complex manifold is greater than \(k/n\), then it has a boundary point at which the Levi-form has rank greater than or equal to k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See: Adachi and Brinkschulte, A global estimate for the Diederich–Fornæss index of weakly pseudoconvex domains, Preprint, 2014.

  2. We refer the reader to related work of Biard [2] which we became aware of after this work was completed.

References

  1. Barrett, D.: Behavior of the Bergman projection on the Diederich–Fornæss worm. Acta Math. 168, 1–10 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biard, S.: On \(L^2\)-estimate for \(\bar{\partial }\) on a pseudoconvex domain in a complete Kähler manifold with positive holomorphic bisectional curvature. J. Geom. Anal. 24, 1583–1612 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boas, H.P., Straube, E.J.: Sobolev estimates for the \(\overline{\partial }\)-Neumann operator on domains in \({\mathbb{C}}^n\) admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206, 81–88 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndtsson, B., Charpentier, Ph: A Sobolev mapping property of the Bergman kernel. Math. Z. 235, 1–10 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Błocki, Z.: The Bergman metric and the pluricomplex Green function. Trans. Am. Math. Soc. 357, 2613–2625 (2004)

    Google Scholar 

  6. Cao, J., Shaw, M.-C., Wang, L.: Estimates for the \(\bar{\partial }\)-Neumann problem and nonexistence of \(C^2\) Levi-flat hypersurfaces in \({{\mathbb{C}}{P}^{n}}\), Math. Z. 248, 183–221. Erratum, 223–225. (2004)

  7. Cao, J., Shaw, M.-C.: A new proof of the Takeuchi Theorem. Lect. Notes Seminario Interdisp di Mate 4, 65–72 (2005)

    MathSciNet  Google Scholar 

  8. Cao, J., Shaw, M.-C.: The \(\overline{\partial }\)-Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in \({\mathbb{c}}{P}^{n}\) with \(n\ge 3\). Math. Z. 256, 175–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Catlin, D.: Global regularity of the \(\bar{\partial }\)-Neumann problem, Complex Analysis of Several Variables. In: Y.-T. Siu, (ed.), Proc. Symp. Pure Math., vol. 41, Am. Math. Soc., pp. 39–49 (1984)

  10. Chen, B., Fu, S.: Comparison of the Bergman and Szegő kernels. Adv. Math. 228, 2366–2384 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demailly, J.-P.: Mesures de Monge–Ampère et mesures plurisousharmoniques. Math. Z. 194, 519–564 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diederich, K., Fornæss, J.E.: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Invent. Math. 39, 129–141 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diederich, K., Fornæss, J.E.: Pseudoconvex domains: an example with nontrivial Nebenhülle. Math. Ann. 225, 275–292 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fornæss, J.E., Herbig, A.-K.: A note on plurisubharmonic defining functions in \(\mathbb{C}^{n}\). Math. Ann. 342, 749–772 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greene, R.E., Wu, H.: On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs. Abh. Math. Sem. Univ. Hamburg 47, 171–185 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harrington, P.S.: The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries. Math. Res. Lett. 14, 485–490 (2007)

    MathSciNet  Google Scholar 

  17. Harrington, P.S.: Global regularity for the \(\overline{\partial }\)-Neumann operator and bounded plurisubharmonic exhaustion functions. Adv. Math. 228, 2522–2551 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kerzman, N., Rosay, J.-P.: Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut. Math. Ann. 257, 171–184 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kohn, J.J.: Quantitative estimates for global regularity, Analysis and geometry in several complex variables (Katata, 1997), 97–128. Trends Math, Birkhäuser Boston, Boston, MA (1999)

  20. Lins Neto, A.: A note on projective Levi flats and minimal sets of algebraic foliations. Ann. Inst. Fourier 49, 1369–1385 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nemirovskii, S.: Stein domains with Levi-plane boundaries on compact complex surfaces (Russian) Mat. Zametki 66:632–635; translation in Math. Notes 66(1999):522–525 (1999)

  22. Ohsawa, T., Sibony, N.: Bounded P.S.H. functions and pseudoconvexity in Kähler manifolds. Nagoya Math. J. 149, 1–8 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Pinton, S., Zampieri, G.: The Diederich-Fornæss index and the global regularity of the \(\bar{\partial }\)-Neumann problem. Math. Z. 276, 93–113 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Range, R.M.: A remark on bounded strictly plurisubharmonic exhaustion functions. Proc. Am. Math. Soc. 81, 220–222 (1981)

    Article  MathSciNet  Google Scholar 

  25. Siu, Y.-T.: Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension \(\ge 3\). Ann. Math. 151, 1217–1243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sibony, N.: Une classe de domaines pseudoconvexes. Duke Math. J. 55, 299–319 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Straube, E.: Good Stein neighborhood bases and regularity of the \(\bar{\partial }\)-Neumann problem. Ill. J. Math. 45, 856–871 (2001)

    MathSciNet  Google Scholar 

  28. Weinstock, B.: Some conditions for uniform \(H\)-convexity. Ill. J. Math. 19, 400–404 (1975)

    MATH  MathSciNet  Google Scholar 

  29. Takeuchi, A.: Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif. J. Math. Soc. Jpn. 16, 159–181 (1964)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was done while the first author visited the University of Notre Dame in April, 2012. He thanks the Department of Mathematics for the warm hospitality. The authors also thank the referee for constructive suggestions. The authors were supported in part by NSF Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqi Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Shaw, MC. The Diederich–Fornæss Exponent and Non-existence of Stein Domains with Levi-Flat Boundaries. J Geom Anal 26, 220–230 (2016). https://doi.org/10.1007/s12220-014-9546-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9546-6

Keywords

Mathematics Subject Classification

Navigation