Skip to main content
Log in

Intersection theory of the stable pair compactification of the moduli space of six lines in the plane

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We generalize Keel’s results on the intersection theory of \({\overline{M}}_{0,n}\) to the first nontrivial higher-dimensional case, the stable pair compactification \({\overline{M}}(3,6)\) of the moduli space M(3, 6) of six lines in the plane. In particular, we describe a sequence of blowups yielding a small resolution of \({\overline{M}}(3,6)\), and use this sequence to give a presentation of the Chow ring of any small resolution of \({\overline{M}}(3,6)\), analogous to Keel’s presentation of \(A^*({\overline{M}}_{0,n})\). We also introduce tautological classes on the moduli space of stable hyperplane arrangements and discuss their intersection theory on \({\overline{M}}(3,6)\). As an application of our results, we give an independent proof of Luxton’s result that \({\overline{M}}(3,6)\) is the log canonical compactification of M(3, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexeev, V.: Weighted Grassmannians and stable hyperplane arrangements (2008). arXiv:0806.0881

  2. Alexeev, V.: Moduli of Weighted Hyperplane Arrangements. Advanced Courses in Mathematics, CRM Barcelona, Springer, (2015)

  3. Aluffi, P.: Chern classes of blow-ups. Math. Proc. Cambridge Philos. Soc. 148(2), 227–242 (2010)

  4. Corey, D.: Initial degenerations of Grassmannians. Sel. Math. New Ser. 27(4), 57 (2021). https://doi.org/10.1007/s00029-021-00679-6

  5. Faber, C.: Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians. In: Hulek, K., et al. (eds.) New Trends in Algebraic Geometry. London Mathematical Society Lecture Note Series, vol. 264, pp. 93–109. Cambridge University Press (1999)

  6. Fulton, W.: Intersection Theory. 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2. Springer, Berlin (1998)

  7. Fulton, w., MacPherson, R, : A compactification of configuration spaces. Ann. Math. 139(1), 183–225 (1994)

  8. Gallardo, P., Routis, E.: Wonderful compactifications of the moduli space of points in affine and projective space. Eur. J. Math. 3(3), 520–564 (2017)

    Article  MathSciNet  Google Scholar 

  9. Getzler, E.: Topological recursion relations in genus \(2\). In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 73–106. World Scientific, River Edge (1998)

  10. Hacking, P., Keel, S., Tevelev, J.: Compactification of the moduli space of hyperplane arrangements. J. Algebraic Geom. 15(4), 657–680 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hacon, C.D., Kovács, S.J.: Generic vanishing fails for singular varieties and in characteristic \(p>0\). In: Hacon, C.D., et al. (eds.) Recent Advances in Algebraic Geometry. London Mathematical Society Lecture Note Series, vol. 417, pp. 240–253. Cambridge University Press, Cambridge (2015)

    Chapter  Google Scholar 

  12. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  13. Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)

    Article  MathSciNet  Google Scholar 

  14. Herrmann, S., Jensen, A., Joswig, M., Sturmfels, B.: How to draw tropical planes. Electron. J. Comb. 16 (2009). http://www.combinatorics.org/Volume_16/Abstracts/v16i2r6.html

  15. Herrmann, S., Joswig, M., Speyer, D.: Dressians, tropical Grassmannians, and their rays. Forum Math. 26(6) (2014)

  16. Kapranov, M.M.: Chow quotients of Grassmannians. I. In: Gelfand, S., Gindikin, S. (eds.) M. Gel’fand Seminar Advances in Soviet Mathematics, vol. 16.2, pp. 29–110. American Mathematical Society, Providence (1993)

    Google Scholar 

  17. Keel, S.: Intersection theory of moduli space of stable \(n\)-pointed curves of genus zero. Trans. Amer. Math. Soc. 330(2), 545–574 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Keel, S., McKernan, J.: Contractible extremal rays on \({\overline{M}}_{0,n}\). In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, vol. II, pp. 115–130. International Press, Somerville (2013)

  19. Keel, S., Tevelev, J.: Geometry of chow quotients of grassmannians. Duke Math. J. 134(2), 259–311 (2006)

    Article  MathSciNet  Google Scholar 

  20. Kimura, S.: Fractional intersection and bivariant theory. Comm. Algebra 20(1), 285–302 (1992)

    Article  MathSciNet  Google Scholar 

  21. Knudsen, F.F.: The projectivity of the moduli space of stable curves, II: The stacks \({{M}}_{g, n}\). Math. Scand 52(2), 161–199 (1983)

    Article  MathSciNet  Google Scholar 

  22. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  23. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix airy function. Comm. Math. Phys. 147(1), 1–23 (1992)

    Article  MathSciNet  Google Scholar 

  24. Li, L.: Wonderful compactification of an arrangement of subvarieties. Michigan Math. J. 58(2), 535–563 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Luxton, M.A.: The Log Canonical Compactification of the Moduli Space of Six Lines in \({\mathbb{P}}^{2}\). Ph.D Thesis. The University of Texas at Austin (2008)

  26. Mumford, D.: Towards an enumerative geometry of the moduli space of curves. In: Shafarevich, I.R. (ed.) Arithmetic and Geometry, Vol. II. Progress in Mathematics, vol. 36, pp. 271–328. Birkhäuser, Boston (1983)

  27. Petersen, D.: The Chow ring of a Fulton-MacPherson compactification. Michigan Math. J. 66(1), 195–202 (2017)

    Article  MathSciNet  Google Scholar 

  28. Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004)

    Article  MathSciNet  Google Scholar 

  29. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243–310. Lehigh University, Bethlehem (1991)

Download references

Acknowledgements

The author is grateful for the help and support of his advisor, Valery Alexeev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolan Schock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the NSF Grant DMS-1902157.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schock, N. Intersection theory of the stable pair compactification of the moduli space of six lines in the plane. European Journal of Mathematics 8, 139–192 (2022). https://doi.org/10.1007/s40879-021-00508-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-021-00508-2

Keywords

Mathematics Subject Classification

Navigation