Skip to main content
Log in

Hidden toric symmetry and structural stability of singularities in integrable systems

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

The goal of the paper is to develop a systematic approach to the study of (possibly degenerate) singularities of integrable systems and their structural stability. Following Nguyen Tien Zung, as the main tool, we use “hidden” system-preserving torus actions near singular orbits. We give sufficient conditions for the existence of such actions and show that they are persistent under integrable perturbations. We find toric symmetries for several infinite series of singularities and prove, as an application, structural stability of Kalashnikov’s parabolic orbits with resonances in the real-analytic case. We also classify all Hamiltonian k-torus actions near a singular orbit on a symplectic manifold \(M^{2n}\) (or on its complexification) and prove that the normal forms of these actions are persistent under small perturbations. As a by-product, we prove an equivariant version of the Vey theorem (Amer J Math 100(3):591–614, 1978) about local symplectic normal form of nondegenerate singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In practice, one can verify condition (ii) of Theorems  2.1 and 2.2 using Lemma 2.3.

  2. Indeed, it follows from Theorem 3.10 that the action of generators \(\psi ^a :=p(\gamma ^a)\) of \(\Gamma \) on V has the form

    for some . Here is a generating set of the lattice \(p^{-1}(\Gamma )\subset {\mathbb {R}}^r\), \(p:{\mathbb {R}}^r\rightarrow (S^1)^r\) denotes the projection. Since \(p^{-1}(\Gamma )\) is a lattice in \({\mathbb {R}}^r\), there exists a unique linear map \({\mathbb {R}}^r\rightarrow {\mathbb {R}}^{n-r}\) sending , \(1\leqslant a\leqslant r\). Clearly, this linear map has the form \(\gamma \mapsto (\langle m_1,\gamma \rangle ,\dots ,\langle m_{n-r},\gamma \rangle )\), \(\gamma \in {\mathbb {R}}^r\), for some \(m_1,\dots ,m_{n-r}\in {\mathbb {R}}^r\). From the short exact sequence \(0\rightarrow 2\pi {{\mathbb {Z}}}^r\rightarrow p^{-1}(\Gamma )\rightarrow \Gamma \rightarrow 0\), we conclude that , provided that \(\gamma \in 2\pi {{\mathbb {Z}}}^r\). Therefore . This proves (11).

References

  1. Bau, T., Zung, N.T.: Singularities of integrable and near-integrable Hamiltonian systems. J. Nonlinear Sci. 7(1), 1–7 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochner, S.: Compact groups of differentiable transformations. Ann. Math. 46(3), 372–381 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems. Chapman & Hall/CRC, Boca Raton (2004)

    Book  MATH  Google Scholar 

  4. Bolsinov, A., Guglielmi, L., Kudryavtseva, E.A.: Symplectic invariants for parabolic orbits and cusp singularities of integrable systems. Philos. Trans. Roy. Soc. A 376(2131), Art. No. 20170424 (2018)

  5. Bolsinov, A.V., Richter, P.H., Fomenko, A.T.: The method of loop molecules and the topology of the Kovalevskaya top. Sb. Math. 191(2), 151–188 (2020)

    Article  Google Scholar 

  6. Broer, H.W., Chow, S.-N., Kim, Y., Vegter, G.: A normally elliptic Hamiltonian bifurcation. Z. Angew. Math. Phys. 44(3), 389–432 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaperon, M.: Géométrie différentielle et singularités de systèmes dynamiques. Astérisque, No. 138–139 (1986)

  8. de Verdière, Y.C.: Singular Lagrangian manifolds and semiclassical analysis. Duke Math. J. 116(2), 263–298 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Dellnitz, M., Melbourne, I.: The equivariant Darboux theorem. In: Allgower, E.L., et al. (eds.) Exploiting Symmetry in Applied and Numerical Analysis. Lectures in Applied Mathematics, vol. 29, pp. 163–169. American Mathematical Society, Providence (1993)

    Google Scholar 

  10. Desolneux-Moulis, N.: Singular Lagrangian foliation associated to an integrable Hamiltonian vector field. In: Dazord, P., Weinstein, A. (eds.) Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications, vol. 20, pp. 129–136. Springer, New York (1991)

    Chapter  Google Scholar 

  11. Duistermaat, J.J.: Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems. In: Salvadori L. (eds.) Bifurcation Theory and Applications. Lecture Notes in Mathematics, vol. 1057. Springer, Berlin (1984)

  12. Dullin, H.R., Ivanov, A.V.: Another look at the saddle-centre bifurcation: vanishing twist. Phys. D 211(1–2), 47–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Efstathiou, K., Giacobbe, A.: The topology associated with cusp singular points. Nonlinearity 25(12), 3409–3422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliasson, L.H.: Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment. Math. Helv. 65(1), 4–35 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fomenko, A.T.: Symplectic topology of completely integrable Hamiltonian systems. Russian Math. Surveys 44(1), 181–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garay, M.D.: An isochore versal deformation theorem. Topology 43(5), 1081–1088 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giacobbe, A.: Infinitesimally stable and unstable singularities of 2-degrees of freedom completely integrable systems. Regul. Chaotic Dyn. 12(6), 717–731 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golubitsky, M., Stewart, I.: Generic bifurcation of Hamiltonian systems with symmetry. Phys. D 24(1), 391–405 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillemin, V., Sternberg, S.: A normal form for the moment map. In: Sternberg, S. (ed.) Differential Geometric Methods in Mathematical Physics. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  20. Hanßmann, H.: Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems—Results and Examples. Lecture Notes in Mathematics, vol. 1893. Springer, Berlin (2007)

    MATH  Google Scholar 

  21. Ito, H.: Action-angle coordinates at singularities for analytic integrable systems. Math. Z. 206(3), 363–407 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalashnikov, V.V.: Typical integrable Hamiltonian systems on a four-dimensional symplectic manifold. Izv. Math. 62(2), 261–285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kantonistova, E.O.: Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution. Sb. Math. 207(3–4), 358–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karshon, Y., Tolman, S.: Classification of Hamiltonian torus actions with two dimensional quotients. Geom. Topol. 18(2), 669–716 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karshon, Y., Ziltener, F.: Hamiltonian group actions on exact symplectic manifolds with proper momentum maps are standard. Trans. Amer. Math. Soc. 370(2), 1409–1428 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Knörrer, H.: Singular fibres of the momentum mapping for integrable Hamiltonian systems. J. Reine Angew. Math. 355, 67–107 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Kozlov, I., Oshemkov, A.: Integrable systems with linear periodic integral for the Lie algebra \(e(3)\). Lobachevskii J. Math. 38(6), 1014–1026 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kudryavtseva, E.A.: An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows. Dokl. Math. 86(1), 527–529 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kudryavtseva, E.A., Lepskii, T.A.: The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian. Sb. Math. 202(3), 373–411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kudryavtseva, E., Martynchuk, N.: Existence of a smooth Hamiltonian circle action near parabolic orbits (2021). arXiv:2106.04838

  31. Kudryavtseva, E.A., Oshemkov, A.A.: Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution. Chebyshevskiĭ Sb. 21(2), 244–265 (2020) (in Russian)

  32. Lerman, L.M.: Isoenergetical structure of integrable Hamiltonian systems in an extended neighborhood of a simple singular point: three degrees of freedom. In: Lerman, L., et al. (eds.) Methods of Qualitative Theory of Differential Equations and Related Topics, Advances in the Mathematical Sciences, vol. 48, pp. 219–242. American Mathematical Society, Providence (2000)

  33. Lerman, L.M., Umanskii, Ya.L.: The structure of a Poisson action of \({\mathbb{R}}^2\) on a four-dimensional symplectic manifold. I. Selecta Math. Soviet. 6(4), 365–396 (1987)

  34. Lerman, L.M., Umanskiĭ, Ya.L.: Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of \({\mathbb{R}}^2\) in extended neighborhoods of simple singular points. I. Russian Acad. Sci. Sb. Math. 77(2), 511–542 (1994)

  35. Marle, C.-M.: Sous-variétés de rang constant d’une variété symplectique. In: IIIe Rencontre de Géométrie du Schnepfenried, vol. 1. Astérisque, vols. 107–108, pp. 69–86. Société Mathématique de France, Paris (1983)

  36. Marle, C.-M.: Modéle d’action hamiltonienne d’un groupe de Lie sur une variété symplectique. Rend. Sem. Mat. Univ. Politec. Torino 43(2), 227–251 (1985)

  37. Mineur, H.: Sur les systèmes mécaniques dans lesquels figurent des paramétres fonctions du temps. Étude des systèmes admettant \(n\) intégrales premieres uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld. Journal de l’Ecole Polytechnique, Série III, 143ème année, 173–191 and 237–270 (1937)

  38. Mir, P., Miranda, E.: Rigidity of cotangent lifts and integrable systems. J. Geom. Phys. 157, Art. No. 103847 (2020)

  39. Miranda, E.: Integrable systems and group actions. Cent. Eur. J. Math. 12(2), 240–270 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Miranda, E., Zung, N.T.: Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems. Ann. Sci. Ecole Norm. Sup. 37(6), 819–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moser, J.: On the volume elements on a manifold. Trans. Amer. Math. Soc. 120(2), 286–294 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oshemkov, A.A., Tuzhilin, M.A.: Integrable perturbations of saddle singularities of rank 0 of integrable Hamiltonian systems. Sb. Math. 209(9), 1351–1375 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gautier-Villars, Paris Vol. 1 (1892), 2 (1893), 3 (1899)

  44. Shabat, B.V.: Introduction to Complex Analysis, Part II: Functions of Several Variables. Translations of Mathematical Monographs, vol. 110. American Mathematical Society, Providence (1992)

  45. van der Meer, J.-C.: The Hamiltonian Hopf Bifurcation. Lecture Notes in Mathematics, vol. 1160. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  46. Varchenko, A.N., Givental’, A.B.: Mapping of periods and intersection form. Funct. Anal. Appl. 16(2), 83–93 (1982)

  47. Vey, J.: Sur certaines systèmes dynamiques séparables. Amer. J. Math. 100(3), 591–614 (1978)

  48. Wassermann, G.: Classification of singularities with compact abelian symmetry. In: Singularities. Banach Center Publications, vol. 20, pp. 475–498. PWN, Warsaw (1988)

  49. Weinstein, A.: Lectures on Symplectic Manifolds. Regional Conference Series in Mathematics, vol. 29. American Mathematical Society, Providence (1977)

  50. Zung, N.T.: Decomposition of nondegenerate singularities of integrable Hamiltonian systems. Lett. Math. Phys. 33(3), 187–193 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zung, N.T.: Symplectic topology of integrable Hamiltonian systems, I: Arnold–Liouville with singularities. Compositio Math. 101(2), 179–215 (1996)

    MathSciNet  MATH  Google Scholar 

  52. Zung, N.: A note on degenerate corank-one singularities of integrable Hamiltonian systems. Comment. Math. Helv. 75(2), 271–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zung, N.T.: A la recherche des tores perdus. Habilitation Thesis. Université Montpellier (2001). https://tel.archives-ouvertes.fr/tel-00001283

  54. Zung, N.T.: Actions toriques et groupes d’automorphismes de singularités de systèmes dynamiques intégrables. C. R. Math. Acad. Sci. Paris 336(12), 1015–1020 (2003)

  55. Zung, N.T.: Torus actions and integrable systems. In: Bolsinov, A.V., Fomenko, A.T., Oshemkov, A.A. (eds.) Topological Methods in the Theory of Integrable Systems, pp. 289–328. Cambridge Scientific Publications, Cambridge (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Alexey Bolsinov for helpful comments on Cartan subalgebras of the Lie algebra and valuable suggestions on a preliminary version of the paper, to Andrey Oshemkov for the useful discussion on proving extendability of homomorphisms to a circle from a finite subgroup of a torus (cf. (11)), to Stefan Nemirovski for helpful comments on topologies on the spaces of analytic functions, and to the referees for useful comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Kudryavtseva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Russian Science Foundation (Project 17-11-01303).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtseva, E.A. Hidden toric symmetry and structural stability of singularities in integrable systems. European Journal of Mathematics 8, 1487–1549 (2022). https://doi.org/10.1007/s40879-021-00501-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-021-00501-9

Keywords

Mathematics Subject Classification

Navigation