Skip to main content

On the Destruction of Resonant Lagrangean Tori in Hamiltonian Systems

  • Conference paper
  • First Online:
Recent Trends in Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 35))

Abstract

Starting from Poincaré’s fundamental problem of dynamics, we consider perturbations of integrable Hamiltonian systems in the neighbourhood of resonant Lagrangean (i.e. maximal) invariant tori with a single (internal) resonance. Applying KAM Theory and Singularity Theory we investigate how such a torus disintegrates when the action variables vary in the resonant surface. For open subsets of this surface the resulting lower dimensional tori are either hyperbolic or elliptic. For a better understanding of the dynamics, both qualitatively and quantitatively, we also investigate the singular tori and the way in which they are being unfolded by the action variables. In fact, if N is the number of degrees of freedom, singularities up to co-dimension N − 1 cannot be avoided. In the case of Kolmogorov non-degeneracy the singular tori are parabolic, while under the weaker non-degeneracy condition of Rüssmann the lower dimensional tori may also undergo e.g. umbilical bifurcations. We emphasize that this application of Singularity Theory only uses internal (or distinguished) parameters and no external ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Any non-degenerate example of a co-dimension 1 bifurcation can be reduced to this case. Here we exclude a setting with symmetry or other structural restrictions [20].

  2. 2.

    Here we depart from the general theory of planar singularities that allows to transparently treat the relative equilibria. Indeed, the coordinates p and q already have a “meaning”, so we had to sharpen the usual assumption that the (homogeneous) 3-jet does not have multiple roots.

  3. 3.

    Here we use that the vector (1, e, , e4) is Diophantine as well.

References

  1. Arnol’d, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, Berlin (1983)

    Book  Google Scholar 

  2. Arnol’d, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. In: Arnol’d, V.I. (ed.) Dynamical Systems, vol. III. Springer, Berlin (1988)

    Google Scholar 

  3. Arnol’d, V.I., Vasil’ev, V.A., Goryunov, V.V., Lyashko, O.V.: Singularity theory. I: Singularities, local and global theory. In: Arnol’d, V.I. (ed.) Dynamical Systems, vol. VI. Springer, Berlin (1993)

    Google Scholar 

  4. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Physica D 238(3), 309–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broer, H.W., Hanßmann, H., You, J.: Bifurcations of normally parabolic tori in Hamiltonian systems. Nonlinearity 18, 1735–1769 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broer, H.W., Hanßmann, H., You, J.: Umbilical torus bifurcations in Hamiltonian systems. J. Differ. Equ. 222, 233–262 (2006)

    Article  MATH  Google Scholar 

  7. Broer, H.W., Hoo, J., Naudot, V.: Normal linear stability of quasi-periodic tori. J. Differ. Equ. 232(2), 355–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos. LNM, vol. 1645. Springer, Berlin (1996)

    Google Scholar 

  9. Broer, H.W., Huitema, G.B., Takens, F.: Unfoldings of quasi-periodic tori. Mem. AMS 83 421, 1–82 (1990)

    MathSciNet  Google Scholar 

  10. Broer, H.W., Sevryuk, M.B.: kam theory: quasi-periodicity in dynamical systems. In: Broer, H.W., Hasselblatt, B., Takens, F. (eds.) Handbook of Dynamical Systems, vol. 3, pp. 249–344. North-Holland, Amsterdam (2010)

    Google Scholar 

  11. Broer, H.W., Tangerman, F.M.: From a differentiable to a real analytic perturbation theory, applications to the Kupka Smale theorems. Ergodic Theory Dynam. Syst. 6, 345–362 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cong, F., Küpper, T., Li, Y., You, J.: KAM-type theorem on resonant surfaces for nearly integrable Hamiltonian systems. J. Nonlinear Sci. 10, 49–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheng, C.-Q.: Birkhoff–Kolmogorov–Arnold–Moser tori in convex Hamiltonian systems. Commun. Math. Phys. 177, 529–559 (1996)

    Article  MATH  Google Scholar 

  14. Cheng, C.-Q.: Lower Dimensional Invariant Tori in the Regions of Instability for Nearly Integrable Hamiltonian Systems. Commun. Math. Phys. 203, 385–419 (1999)

    Article  MATH  Google Scholar 

  15. Cheng, C.-Q., Wang, S.: The surviving of lower dimensional tori from a resonant torus of Hamiltonian systems. J. Differ. Equ. 155(2), 311–326 (1999)

    Article  MATH  Google Scholar 

  16. Corsi, L., Gentile, G.: Melnikov theory to all orders and Puiseux series for subharmonic solutions. J. Math. Phys. 49(112701), 1–29 (2008)

    MathSciNet  Google Scholar 

  17. Gallavoti, G., Gentile, G., Giuliani, A.: Fractional Lindstedt series. J. Math. Phys. 47(012702), 1–33 (2006)

    Google Scholar 

  18. Hanßmann, H.: The Quasi-Periodic Centre-Saddle Bifurcation. J. Differ. Equ. 142(2), 305–370 (1998)

    Article  MATH  Google Scholar 

  19. Hanßmann, H.: Hamiltonian torus bifurcations related to simple singularities. In: Ladde, G.S., Medhin, N.G., Sambandham, M. (eds.) Dynamic Systems and Applications, Atlanta 2003, pp. 679–685. Dynamic Publishers, Atlanta (2004)

    Google Scholar 

  20. Hanßmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems—Results and Examples. LNM, vol. 1893. Springer, Berlin (2007)

    Google Scholar 

  21. Hanßmann, H., Sommer, B.: A degenerate bifurcation in the Hénon–Heiles family. Celestial Mech. Dynam. Astronom. 81(3), 249–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirsch, M.W.: Differential Topology. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  23. Markus, L., Meyer, K.R.: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Mem. AMS 144, 1–52 (1974)

    MathSciNet  Google Scholar 

  24. Poénaru, V.: Singularités C en Présence de Symétrie. LNM, vol. 510. Springer, Berlin (1976)

    Google Scholar 

  25. Pöschel, J.: Integrability of Hamiltonian Systems on Cantor Sets. Commun. Pure Appl. Math. 35, 653–696 (1982)

    Article  MATH  Google Scholar 

  26. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6, 119–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thom, R.: Structural Stability and Morphogenesis. An Outline of a General Theory of Models, 2nd edn. Addison-Wesley, Reading (1989)

    Google Scholar 

  28. Sevryuk, M.B.: The classical KAM theory at the dawn of the twenty-first century. Moscow Math. J. 3(3), 1113–1144 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Xu, J., You, J.: A note on the paper “Invariant tori for nearly integrable Hamiltonian systems with degeneracy”. Nanjing University. Preprint (2006)

    Google Scholar 

  30. You, J.: A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems. Commun. Math. Phys. 192(1), 145–168 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for challenging us with the example\(H(\varphi,I) = H_{0}(I) +\epsilon H_{1}(\varphi )\) of a non-versal perturbation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henk W. Broer , Heinz Hanßmann or Jiangong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Broer, H.W., Hanßmann, H., You, J. (2013). On the Destruction of Resonant Lagrangean Tori in Hamiltonian Systems. In: Johann, A., Kruse, HP., Rupp, F., Schmitz, S. (eds) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 35. Springer, Basel. https://doi.org/10.1007/978-3-0348-0451-6_13

Download citation

Publish with us

Policies and ethics