Skip to main content
Log in

Dynamic Flow Stress Behavior of Hypo-Eutectoid Ferrite-Pearlite Steels Under Rapid Heating

  • Research Paper
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

In the machining process, the workpiece undergoes large plastic deformation at high strain rate and is heated rapidly by plastic work and friction. Rapid temperature excursions brought about during this process may result in non-typical microstructures whose mechanical behavior differs from what has traditionally been observed and modeled. This paper presents dynamic stress-strain measurements on three hypo-eutectoid ferrite-pearlite carbon steels of increasing carbon content (AISI 1018, 1045 and 1075) under rapidly heated conditions, with total heating times less under 4 s, up to 1000 °C. The mechanical behavior of these steels is broken down into four regions: low temperature thermal softening, followed by dynamic strain aging, pearlite decomposition and, finally, ferrite-austenite thermal softening. The present rapidly heated high strain rate results are generally commensurate with literature data up through dynamic strain aging to about 700 °C, indicating limited effects of short heating times below the pearlite decomposition temperature (A1). Above A1, however, the results diverge significantly, owing to the limited time for diffusion processes that govern the transformation from ferrite-pearlite to ferrite-austenite and finally austenite. The divergence includes an inversion of the effect of carbon content on flow stress above A1 compared to previous studies with longer heating times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. All composition information is reported as mass percent.

References

  1. Tlusty J (2000) Manufacturing processes and equipment. Prentice-Hall, Upper Saddle River

    Google Scholar 

  2. Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, Boston

    Book  Google Scholar 

  3. Arrazola PJ et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718

    Article  Google Scholar 

  4. Oxley PLB (1989) Mechanics of machining: an analytical approach to assessing machinability. Wiley, New York

    Google Scholar 

  5. Özel T, Altan T (2000) Determination of workpiece flow stress and friction at the chip-tool contact for high-speed cutting. Int J Mach Tools Manuf 40:133–152

    Article  Google Scholar 

  6. Shatla M, Kerk C, Altan T (2001) Process modeling in machining. Part I: determination of flow stress data. Int J Mach Tools Manuf 41:1511–1534

    Article  Google Scholar 

  7. Warnecke G, Oh J-D (2002) A new thermo-viscoplastic material model for finite-element-analysis of the chip formation process. CIRP Ann Manuf Technol 51(1):79–82

    Article  Google Scholar 

  8. Özel T, Zeren E (2006) A methodology to determine work material flow stress and tool-chip interfacial friction properties by using analysis of machining. ASME J Manuf Sci Eng 128:119–129

    Article  Google Scholar 

  9. Shrot A, Bäker M (2012) Determination of Johnson-Cook parameters from machining simulations. Comput Mater Sci 52:298–304

    Article  Google Scholar 

  10. Dirikolu MH, Childs THC, Maekawa K (2001) Finite element simulation of chip flow in metal machining. Int J Mech Sci 43:2699–2713

    Article  Google Scholar 

  11. Schulze V et al (2011) Modeling the process-induced modifications of the microstructure of work piece surface zones in cutting processes. Adv Mater Res 223:371–380

    Article  Google Scholar 

  12. Han A et al (2008) White layer formation due to phase transformation in orthogonal machining of AISI 1045 annealed steel. Mater Sci Eng A 488:195–204

    Article  CAS  Google Scholar 

  13. Duan CZ, Zhang LC (2012) Adiabatic shear banding in AISI 1045 steel during high speed machining: mechanisms of microstructural evolution. Mater Sci Eng A 532:111–119

    Article  CAS  Google Scholar 

  14. Manjoine MJ (1944) Influence of rate of strain and temperature on yield stresses of mild steel. J Appl Mech 11:A211–A218

    Google Scholar 

  15. Campbell JD, Ferguson WG (1970) The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag 21:63–81

    Article  CAS  Google Scholar 

  16. Oyane M et al (1967) The behaviour of some steels under dynamic compression. In 10th Japan Congress on Testing Materials

  17. Shirakashi T, Maekawa K, Usui E (1983) Flow stress of low carbon steel at high temperature and strain rate (Part 1)—propriety of incremental strain method in impact compression test with rapid heating and cooling systems. Bull Japan Soc Prec Eng 17(3):161–166

    Google Scholar 

  18. Jaspers SPFC, Dautzenberg JH (2002) Material behavior in conditions similar to metal cutting: flow stress in the primary shear zone. J Mater Process Technol 122:322–330

    Article  CAS  Google Scholar 

  19. Lee W-S, Liu C-Y (2006) The effects of temperature and strain rate on the dynamic flow behavior of different steels. Mater Sci Eng A 426:101–113

    Article  CAS  Google Scholar 

  20. Follansbee PS (2014) Fundamentals of strength. Wiley, New York

    Book  Google Scholar 

  21. Cottrell AH, Bilby BA (1949) Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A 62(49):49–62

    Article  Google Scholar 

  22. Baird JD (1973) In The inhomogeneity of plastic deformation. American Society for Metals, Metals Park, pp 191–220

  23. Li C-C, Leslie WC (1978) Effects of dynamic strain aging on the subsequent mechanical properties of carbon steels. Metall Trans A 9A:1765–1775

    Article  CAS  Google Scholar 

  24. Robinson JM, Shaw MP (1994) Microstructural and mechanical influences on dynamic strain aging phenomena. Int Mater Rev 39(3):113–122

    Article  CAS  Google Scholar 

  25. McGannon HE (1964) The making, shaping and treating of steel, 8th ed. US Steel, Pittsburg

    Google Scholar 

  26. Sachdev AK (1982) Dynamic strain aging of various steels. Metall Trans A 13A:1793–1797

    Article  Google Scholar 

  27. Cady CM et al (2000) Dynamic materials testing, texture, and yield-surface calculation of an automotive sheet steel. Metall Mater Trans A 31A:2439–2448

    Article  CAS  Google Scholar 

  28. Rodriguez P (1984) Serrated plastic flow. Bull Mater Sci 6(4):653–663

    Article  Google Scholar 

  29. Speich GR, Demarest VA, Miller RL (1981) Formation of austenite during intercritical annealing of dual-phase steels. Metall Trans A 12A:1419–1428

    Article  Google Scholar 

  30. Datta DP, Gokhale AM (1981) Austenitization kinetics of pearlite and ferrite aggregates in a low carbon steel containing 0.15 Wt Pct C. Metall Trans A 12A:443–450

    Article  Google Scholar 

  31. Esin VA et al (2014) Situ synchotron X-ray diffraction and dilatometric study of austenite formation in a multi-component steel: influence of initial microstructure and heating rate. Acta Mater 80:118–131

    Article  CAS  Google Scholar 

  32. Ashby MF, Easterling KE (1984) The transformation hardening of steel surfaces by laser beams-I. Hypo-eutectoid steels. Acta Metall 32(11):1935–1948

    Article  CAS  Google Scholar 

  33. Caballero FG, Capdevila C, García de Andrés C (2001) Modelling of isothermal formation of pearlite and subsequent reaustenitisation in eutectoid steel during continuous heating. Mater Sci Technol 17:686–692

    Article  CAS  Google Scholar 

  34. Roósz A, Gácsi Z, Fuchs EG (1983) Isothermal formation of austenite in eutectoid plain carbon steel. Acta Metall 31(4):509–517

    Article  Google Scholar 

  35. Roberts GA, Mehl RF (1943) The mechanism and the rate of formation of austenite from ferrite-cementite aggregates. Trans Am Soc Met 31:613

    Google Scholar 

  36. Atkinson C, Akbay T, Reed AC (1995) Theory for reaustenitisation from ferrite/cementite mixtures in Fe-C-X steels. Acta Metall Mater 43(5):2013–2031

    Article  CAS  Google Scholar 

  37. Kaluba WJ, Taillard R, Foct J (1998) The bainitic method of austenite formation during rapid heating. Acta Mater 46(16):5917–5927

    Article  CAS  Google Scholar 

  38. Castro Cerda FM et al (2017) Austenite formation in 0.2% C and 0.45% C steels under conventional and ultrafast heating. Mater Des 116:448–460

    Article  CAS  Google Scholar 

  39. Mates SP, Stoudt M, Gangireddy S (2016) Measuring the influence of pearlite dissolution on the transient dynamic strength of rapidly heated plain carbon steels. J Met 68(7):1832–1838

    CAS  Google Scholar 

  40. Semiatin SL et al (2017) The radial temperature gradient in the gleeble hot torson test and its effect on the interpretation of plastic flow behavior. Metall Mater Trans A 48A:5357–5367

    Article  CAS  Google Scholar 

  41. Davis JR (eds.) (1998) Metals handbook. ASM International, Materials Park

    Google Scholar 

  42. Hatta N et al (1985) Modelling on flow stress of plain carbon steel at elevated temperatures. Steel Res 56(11):575–582

    Article  Google Scholar 

  43. Panigrahi BK (2001) Processing of low carbon steel plate and hot strip—an overview. Bull Mater Sci 24(4):361–371

    Article  CAS  Google Scholar 

  44. Martínez-de-Guerenu A et al (2004) Recovery during annealing in a cold rolled low carbon steel. Part I: kinetics and microstructural characterization. Acta Mater 52:3657–3664

    Article  CAS  Google Scholar 

  45. Mates SP, Rhorer R, Whitenton E, Burns T, Basak D (2008) A pulse-heated kolsky bar technique for measuring the flow stress of metals at high loading and heating rates. Exp Mech 48:799–807

    Article  Google Scholar 

  46. Kinsey B et al (2013) Investigation of electroplastic effect at high deformation rates for 304SS and Ti-6Al-4V. CIRP Ann Manuf Technol 62:279–282

    Article  Google Scholar 

  47. Okazaki K, Kagawa M, Conrad H (1980) An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium. Mater Sci Eng 45:109–116

    Article  CAS  Google Scholar 

  48. Safa K, Gary G (2010) Displacement correction for punching at a dynamically loaded bar end. Int J Impact Eng 37(4):371–381

    Article  Google Scholar 

  49. Gangireddy S, Mates SP (2017) High temperature dynamic response of a Ti-6Al-4V alloy: a modified constitutive model for gradual phase transformation. J Dyn Behav Mater 3(4):557–574

    Article  Google Scholar 

  50. ASTM International (1993) Manual on the use of thermocouples in temperature measurement

  51. DeWitt DP, Incropera FP (1988) Physics of thermal radiation. In Theory and practice of radiation thermometry. Wiley, New York

  52. Lee S-J, Pavlina EJ, Van Tyne CJ (2010) Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Mater Sci Eng A 527:3186–3194

    Article  CAS  Google Scholar 

  53. Basak D et al (2004) Temperature control of pulse heated specimens in a kolsky bar apparatus using microsecond time-resolved pyrometry. Int J Thermophys 25(2):561–574

    Article  CAS  Google Scholar 

  54. Lane B et al (2013) Uncertainty of temperature measurements by infrared thermography for metal cutting applications. Metrologia 50:637–653

    Article  Google Scholar 

  55. Gray GT (1990) Classic split-hopkinson pressure bar testing. ASM International, Materials Park

  56. Dollar M, Bernstein IM, Thompson AW (1988) Influence of deformation substructure on flow and fracture of fully pearlitic steel. Acta Metall 36(2):311–320

    Article  CAS  Google Scholar 

  57. Langford G (1977) Deformation of pearlite. Metall Trans A 8A:861–875

    Article  CAS  Google Scholar 

  58. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rate, and temperatures. In International Symposium on Ballistics, The Hague

  59. Maekawa K, Shirakashi T, Usui E (1983) Flow stress of low carbon steel at high temperature and strain rate (Part 2)—flow stress under variable temperature and variable strain rate. Bull Japan Soc Prec Eng 17(3):167–172

    Google Scholar 

  60. Seif M et al (2016) Temperature-dependent material modeling for structural steels: formulation and application. National Institute of Standards and Technology, Gaithersburg

    Book  Google Scholar 

  61. Harding J (1969) The effect of grain size and strain rate on the lower yield stress of pure iron at 288 K. Acta Metall 17:949–958

    Article  CAS  Google Scholar 

  62. Jia D, Ramesh KT, Ma E (2003) Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater 51:3495–3509

    Article  CAS  Google Scholar 

  63. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424

    Article  CAS  Google Scholar 

  64. Itabashi M, Kawata K (2000) Carbon content effect on high-strain-rate tensile properties for carbon steels. Int J Impact Eng 24:117–131

    Article  Google Scholar 

  65. Van Den Beukel A, Kocks UF (1982) The strain dependence of static and dynamic strain-aging. Acta Metall 30:1027–1034

    Article  Google Scholar 

  66. Caillard D, Bonneville J (2015) Dynamic strain aging caused by a new Pierels mechanism at high-temperature in iron. Scripta Mater 95:15–18

    Article  CAS  Google Scholar 

  67. Gilat A, Wu X (1997) Plastic deformation of 1020 steel over a wide range of strain rates and temperatures. Int J Plast 13(6–7):611–632

    Article  CAS  Google Scholar 

  68. Zerilli FJ, Armstrong RW (1987) Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys 61(5):1816–1825

    Article  CAS  Google Scholar 

  69. LePera FS (1979) Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 12:263–268

    Article  CAS  Google Scholar 

  70. Klopp RW, Clifton RJ, Shawki TG (1985) Pressure-shear impact and the dynamic viscoplastic response of metals. Mech Mater 4:375–385

    Article  Google Scholar 

  71. Frost HJ, Ashby MF (1982) Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergammon Press, New York

    Google Scholar 

  72. Wray PJ (1982) Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures. Metall Trans A 13A:125–134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the efforts, support and input of the following individuals in the experimental work underpinning this paper: Debasis Basak, Tim Burns, Matt Davies, Richard Fields, Sindhura Gangireddy, Lyle Levine, Eric Whitenton, Maureen Williams, Howard Yoon and Sandra Young at NIST and Eli Marcus of the Nuclear Research Center Negev, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Mates.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mates, S.P., Vax, E., Rhorer, R.R. et al. Dynamic Flow Stress Behavior of Hypo-Eutectoid Ferrite-Pearlite Steels Under Rapid Heating. J. dynamic behavior mater. 6, 246–265 (2020). https://doi.org/10.1007/s40870-020-00241-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-020-00241-z

Keywords

Navigation