Skip to main content
Log in

Fatigue analysis and reliability assessment of tether system of an offshore oil and gas platform operating in extreme sea-state conditions

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

The rise in energy demands has increased hydrocarbon exploration and production-related activities in deep-water and ultra-deep-water settings. In this context, Tension Leg Platforms (TLPs) play a significant role in offshore hydrocarbon exploration and production projects. They are compliant platforms that are vertically moored permanently to the seabed with the help of taut mooring lines. They are appropriate for water depths ranging from 1000 to 5000 ft. The environmental loads acting on the structure can induce dynamic variation in the tether tension, resulting in tether failure. The present study focuses on investigating the dynamic response pattern of the platform’s restraining system under extreme sea-state conditions. With the transition in sea-state condition from rough to phenomenal, a significant increase in the variation in stress cycle range and cycle average was observed. The dynamic analysis under phenomenal sea-state conditions highlighted an increase of almost 28.57% in the tether tension. Estimating fatigue damage on the tethers and predicting fatigue life were carried out. The results indicate that as the sea state intensifies, the fatigue life of the tethers tends to decrease substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Sivakumar, S. Krishna, S. Hari, R.K. Vij, Environ. Technol. Innov. 20, 101100 (2020)

    Article  Google Scholar 

  2. S. Pandian, P.C. Dahyalal, S. Krishna, S. Hari, D. Subramanian, J. Pet. Explor. Prod. Technol. 11, 2287 (2021)

    Article  Google Scholar 

  3. S. Hari, S. Krishna, M. Patel, P. Bhatia, R.K. Vij, Pet. Res. 7, 253–262 (2021)

    Google Scholar 

  4. S. Hari, S. Krishna, L.N. Gurrala, S. Singh, N. Ranjan, R.K. Vij, S.N. Shah, J. Nat. Gas Sci. Eng. 95, 104187 (2021)

    Article  Google Scholar 

  5. S. Krishna, H. Sreenivasan, R. Nair, Ann. Geophys. (2018). https://doi.org/10.4401/ag-7638

    Article  Google Scholar 

  6. A.L. Piskarev, M.Y. Shkatov, in Dev. Pet. Sci., vol. 58, (Elsevier, Amsterdam, 2012), pp.1–56

  7. Y. Qi, X. Tian, X. Guo, H. Lu, L. Liu, Ships Offshore Struct. 14, 523 (2019)

    Article  Google Scholar 

  8. M.A.M. Ramirez, A.C. Fernandes, Mar. Syst. Ocean Technol. 12, 150 (2017)

    Article  Google Scholar 

  9. S. Krishna, H. Sreenivasan, M.H.V.R. Rao, R.K. Vij, J. Struct. Integr. Life 21, 39 (2021)

    Google Scholar 

  10. H. Sreenivasan, S. Krishna, M.H.V.R. Rao, R.K. Vij, J. Struct. Integr. Life 21, 29 (2021)

    Google Scholar 

  11. J.V.V. Fernandes, L.V.S. Sagrilo, P.M. Videiro, D.A. Liang, Mar. Syst. Ocean Technol. 11, 68 (2016)

    Article  Google Scholar 

  12. S. Chakrabarti, Handbook of offshore engineering, vol. 2 (Elsevier, Amsterdam, 2005)

    Google Scholar 

  13. B. Wang, Y.G. Tang, L.Q. Liu, Y. Li, X.Q. Qu, China Ocean Eng. 31, 210 (2017)

    Article  Google Scholar 

  14. W.M. Liu, Appl. Mech. Mater. 670–671, 801 (2014)

    Google Scholar 

  15. J.Y. Gu, J.M. Yang, H.N. Lv, China Ocean Eng. 26, 363 (2012)

    Article  Google Scholar 

  16. J.Y. Gu, J.M. Yang, H.N. Lü, China Ocean Eng. 27, 563 (2013)

    Article  Google Scholar 

  17. K.T. Ma, Y. Luo, C.T.T. Kwan, Y. Wu, Mooring system engineering for offshore structures, 1st edn. (Elsevier, Amsterdam, 2019)

    Google Scholar 

  18. J. Speight, Handbook of offshore oil and gas operations, 1st edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

  19. D.O. Oyejobi, M. Jameel, N.H.R. Sulong, N.B. Khan, Proc. Inst. Mech. Eng. Part M 233, 1082 (2019)

    Google Scholar 

  20. Y.M. Low, Mar. Struct. 22, 480 (2009)

    Article  Google Scholar 

  21. H. Fang, M. Duan, Offshore Operation Facilities, 1st edn. (Elsevier, Amsterdam, 2014)

    Google Scholar 

  22. M. Masciola, M. Nahon, F. Driscoll, J. Offshore Mech. Arct. Eng. 135, 31601 (2013)

    Article  Google Scholar 

  23. N.A. Siddiqui, S. Ahmad, Mar. Struct. 14, 331 (2001)

    Article  Google Scholar 

  24. A. Reza, H.M. Sedighi, Adv. Appl. Math. Mech. 7, 357 (2015)

    Article  MathSciNet  Google Scholar 

  25. M.R. Tabeshpour, R. Hedayatpour, Proc. Inst. Mech. Eng. Part M 233, 699 (2019)

    Article  Google Scholar 

  26. S.J. Leverette, S.B. Hodges, in Offshore Technol. Conf. (Offshore Technology Conference, Texas, USA, 2020), pp. 4–7

  27. B.L. Zhang, Q.L. Han, X.M. Zhang, Nonlinear Dyn. 89, 755 (2017)

    Article  Google Scholar 

  28. E. E. Horton, J. H. Brewer, W. H. Silcox, T. A. Hudson, Means and Methods for Anchoring an Offshore Tension Leg Platform, US Patent 3,934,528 (1976). https://patents.google.com/patent/US3934528A/en

  29. O. D. Oyewumi, Stochastic dynamic response of a tension leg platform. Diss. Doctoral dissertation, University of Malaya (2017). http://studentsrepo.um.edu.my/7448

  30. X. Hu, X. Zhang, Y. You, J. Fluids Struct. 87, 263 (2019)

    Article  Google Scholar 

  31. R. Adrezin, P. Bar-Avi, H. Benaroya, J. Aerosp. Eng. 9, 114 (1996)

    Article  Google Scholar 

  32. R.A. Khan, N.A. Siddiqui, S.Q.A. Naqvi, S. Ahmad, Reliab. Eng. Syst. Saf. 91, 73 (2006)

    Article  Google Scholar 

  33. Q. Dong, H. Lu, J. Yang, X. Guo, Mar. Struct. 67, 102645 (2019)

    Article  Google Scholar 

  34. S. Hao, Y. Yu, J. Yu, Z. Yuan, L. Xu, Z. Li, S. Cheng, J. Wu, Ocean Eng. 216, 107645 (2020)

    Article  Google Scholar 

  35. Y. Yu, A. Hardowar, J. Yu, S. Hao, X. Gao, Theor. Appl. Mech. Lett. 8, 291 (2018)

    Article  Google Scholar 

  36. M.R. Tabeshpour, A.A. Golafshani, M.S. Seif, J. Zhejiang Univ. Sci. 7, 1305 (2006)

    Article  Google Scholar 

  37. P.C. Chatterjee, P.K. Das, D. Faulkner, Ocean Eng. 24, 313 (1997)

    Article  Google Scholar 

  38. T. S. Gie, W. C. de Boom, in Offshore Technol. Conf. (Offshore Technology Conference, Texas, USA, 1981)

  39. R.E. Taylor, E.R. Jefferys, Ocean Eng. 13, 449 (1986)

    Article  Google Scholar 

  40. A. Maimun, Z.R. Ismail, M.M. Tofa, H. Abyn, in Offshore Technol. Conf. Asia (Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 2016), pp. 2085–2093

  41. M.A. El-Reedy, Offshore structures, 1st edn. (Elsevier, Amsterdam, 2012)

    Google Scholar 

  42. P. Boccotti, Wave mechanics and wave loads on marine structures, 1st edn. (Elsevier, Amsterdam, 2015)

    Google Scholar 

  43. I. Senjanović, M. Tomić, N. Hadžić, Mar. Struct. 30, 1 (2013)

    Article  Google Scholar 

  44. I. Senjanović, M. Tomić, S. Rudan, Eng. Struct. 56, 117 (2013)

    Article  Google Scholar 

  45. W.J. Pierson, L. Moskowitz, J. Geophys. Res. 69, 5181 (1964)

    Article  Google Scholar 

  46. Y. Bai, W.L. Jin, Marine structural design, 2nd edn. (Elsevier, Amsterdam, 2016)

    Google Scholar 

  47. A. Almar-Naess, P.J. Haagensen, B. Lian, T. Moan, T. Simonsen, J. Energy Resour. Technol. 106, 24 (1984)

    Article  Google Scholar 

  48. A. Naess, T. Moan, Stochastic Dynamics of Marine Structures (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  49. M.A. Miner, J. Appl. Mech. 12, A159 (1945)

    Article  Google Scholar 

  50. Recommended practice—RP-C203: fatigue design of offshore steel structures (DNVGL-RP-0005:2014-06) (DNV GL, Baerum, Norway, 2014)

  51. M.H. Saidee, Fatigue analysis and design of mooring systems—assessment and comparison of different methods (Norwegian University of Science and Technology, Trondheim, 2015)

    Google Scholar 

  52. Guide for position mooring systems (American Bureau of Shipping, Texas, USA, 2020)

  53. Guide for fatigue assessment of offshore structures (American Bureau of Shipping, Texas, USA, 2020)

  54. Petroleum and natural gas industries—specific requirements for offshore structures—part 7: stationkeeping systems for floating offshore structures and mobile offshore units (ISO 19901-7:2013) (International Organization for Standardization (ISO), Geneva, Switzerland, 2013)

  55. Design and analysis of stationkeeping systems for floating structures (American Petroleum Institute, Washington, USA, 2005)

  56. Offshore standard—position mooring (DNVGL-OS-E301) (DNV GL, Baerum, Norway, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanker Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, S., Krishna, S., Rao, M.H.V.R. et al. Fatigue analysis and reliability assessment of tether system of an offshore oil and gas platform operating in extreme sea-state conditions. Mar Syst Ocean Technol 17, 113–121 (2022). https://doi.org/10.1007/s40868-022-00118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-022-00118-x

Keywords

Navigation