Skip to main content

Advertisement

Log in

Effect of turbulence intensity on the linear quadratic control of spar buoy floating wind turbines

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

This paper evaluates the performance of a linear quadratic (LQ) optimal controller designed for a spar buoy floating offshore wind turbine (FOWT) considering different wind turbulence conditions. To account for the uncertainty in offshore wind turbulence intensity (TI), three levels of TI are adopted in the above rated wind speed region. The TI levels of 15%, 11% and 5% are based on an international standard for wind turbine design, measurements from the Hywind Demo FOWT, and long-term measurements from an offshore wind research platform, respectively. The control objectives are improved rotor speed/power regulation and floater pitch motion reduction, compared with a detuned proportional-integral (PI) controller, using collective blade pitch actuation. A two-dimensional modeling approach is adopted for LQ controller design, according to previous verification based on an available wind turbine simulator, assuming aligned wind and waves. The controller tuning is based on wind/wave disturbance models in the time domain. Simulations carried out for the reference OC3-Hywind spar FOWT exposed to the adopted TI levels of 15%, 11% and 5%, in rough sea state, show that the designed LQ controller can yield rotor speed/power variation reduction of approximately 55%, 46% and 12%, respectively, and floater pitch angle reduction of approximately 38%, 32% and 14%, respectively, with acceptable increase in the actuator activity, compared with the baseline PI controller. These results demonstrate that LQ design with suitable tuning can improve the control performance of a spar buoy FOWT in the presence of TI uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.LC.B. Ramos, Effect of offshore turbulence on the control of spar buoy floating wind turbines, in Proceedings of the SOBENA 28th International Congress on Waterborne Transportation, Shipbuilding and Offshore Constructions (SOBENA 2020), Rio de Janeiro, Brazil, October 26–29 (2020). https://doi.org/https://doi.org/10.17648/sobena-2020-122813

  2. World Bank Group. Offshore wind technical potential in Brazil (2020)

  3. World Bank Group. Going global: expanding offshore wind to emerging markets (2019)

  4. M. Karimirad, Stochastic dynamic response analysis of spar-type wind turbines with catenary or taut mooring systems. Doctoral Thesis, NTNU, Trondheim, Norway (2011)

  5. DNV GL, Standard DNVGL-ST-0119: Floating wind turbine structures (2018)

  6. E.A. Bossanyi, G. Ramtharan, B. Savini, The importance of control in wind turbine design and loading, in Proceedings of the 17th IEEE Mediterranean Conference on Control & Automation, June 24–26, Thessaloniki, Greece (2009). https://doi.org/https://doi.org/10.1109/MED.2009.5164721

  7. T.J. Larsen, T.D. Hanson, A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. The Science of making torque from wind. J, Phys. 75(012073), 1–11 (2007). https://doi.org/10.1088/1742-6596/75/1/012073

    Article  Google Scholar 

  8. J.M. Jonkman, Influence of control on the pitch damping of a floating wind turbine. Conference Paper NREL/CP-500–42589. Natl. Renew. Energy Lab. (2008)

  9. O. Bagherieh, R. Nagamune, Gain-scheduling control of a floating offshore wind turbine above rated wind speed. Control Theory Technol. 13(2), 160–172 (2015). https://doi.org/10.1007/s11768-015-4152-0

    Article  Google Scholar 

  10. S. Christiansen, T. Knudsen, T. Bak, Optimal control of a ballast-stabilized floating wind turbine, in Proceedings of IEEE International Symposium on Computer-Aided Control System Design (CACSD), Denver, CO, USA (2011). https://doi.org/https://doi.org/10.1109/CACSD.2011.6044574

  11. F. Lemmer, Low-order modeling, control design and optimization of floating offshore wind turbines. Doctor of Engineering Sciences Thesis, University of Stuttgart, Germany (2018)

  12. F. Lemmer, D. Schlipf, P.W. Cheng, Control design methods for floating wind turbines for optimal disturbance rejection. The science of making torque from wind. J. Phys. 753(092006), 1–14 (2016). https://doi.org/10.1088/1742-6596/753/9/092006

    Article  Google Scholar 

  13. E. Lindeberg, Optimal control of floating offshore wind turbines. Master of Science Thesis, NTNU, Trondheim, Norway (2009)

  14. H. Namik, K. Stol, Individual blade pitch control of a spar-buoy floating wind turbine. IEEE Trans. Cont. Sys. Tech. 22(1), 214–223 (2014). https://doi.org/10.1109/TCST.2013.2251636

    Article  Google Scholar 

  15. R.L. Ramos, Linear quadratic optimal control of a spar-type floating offshore wind turbine in the presence of turbulent wind and different sea states. J. Mar. Sci. Eng. 6(4), 151 (2018). https://doi.org/10.3390/jmse6040151

    Article  Google Scholar 

  16. Z. Wu, Y. Li, Platform stabilization and load reduction of floating offshore wind turbines with tension-leg platform using dynamic vibration absorbers. Wind Energy 23(3), 711–730 (2020). https://doi.org/10.1002/we.2453

    Article  Google Scholar 

  17. DNV GL, Standard DNVGL-ST-0437: Loads and site conditions for wind turbines (2016)

  18. International Electrotechnical Commission (IEC), International Standard IEC 61400–3: Wind turbines—Part 3: Design requirements for offshore wind turbines, Geneva, Switzerland (2009)

  19. International Electrotechnical Commission (IEC), International Standard IEC 61400–1: Wind turbines—Part 1: Design requirements, Geneva, Switzerland (2005)

  20. N. Bodini, J.K. Lundquist, A. Kirincich, Offshore wind turbines will encounter very low atmospheric turbulence. J. Phys. 1452(012023), 1–7 (2020). https://doi.org/10.1088/1742-6596/1452/1/012023

    Article  Google Scholar 

  21. S. Emeis, Current issues in wind energy meteorology. Meteorol. Appl. 21(4), 803–819 (2014). https://doi.org/10.1002/met.1472

    Article  Google Scholar 

  22. B. Ernst, J.R. Seume, Investigation of site-specific wind field parameters and their effect on loads of offshore wind turbines. Energies 5(10), 3835–3855 (2012). https://doi.org/10.3390/en5103835

    Article  Google Scholar 

  23. C. Hübler, C.G. Gebhardt, R. Rolfes, Development of a comprehensive database of scattering environmental conditions and simulation constraints for offshore wind turbines. Wind Energy Sci. 2, 491–505 (2017). https://doi.org/10.5194/wes-2-491-2017

    Article  Google Scholar 

  24. A. Nybø, F.G. Nielsen, J. Reuder, Processing of sonic anemometer measurements for offshore wind applications. J. Phys. 1356(012006), 1–13 (2019). https://doi.org/10.1088/1742-6596/1356/1/012006

    Article  Google Scholar 

  25. A. Nybø, F.G. Nielsen, J. Reuder, M.J. Churchfield, M. Godvik, Evaluation of different wind fields for the investigation of the dynamic response of offshore wind turbines. Wind Energy 23(9), 1810–1830 (2020). https://doi.org/10.1002/we.2518

    Article  Google Scholar 

  26. P.A. Fleming, A. Peiffer, D. Schlipf, Wind turbine controller to mitigate structural loads on a floating wind turbine platform, in Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2016), Busan, Korea, June 19–24 (2016). https://doi.org/https://doi.org/10.1115/OMAE2016-54536

  27. S. Caires, J.J. Schouten, L. Lonseth, V. Neshaug, I. Pathirana, O. Storas, Uncertainties in offshore wind turbulence intensity. J. Phys. 1356(012037), 1–12 (2019). https://doi.org/10.1088/1742-6596/1356/1/012037

    Article  Google Scholar 

  28. G.C. Larsen, K. Ronold, H.E. Jørgensen, K. Argyriadis, J. D. Boer. Ultimate loading of wind turbines. Risø National Laboratory, Risø-R, No. 1111 (EN), Roskilde, DTU Library, Denmark (1999).

  29. P.J. Moriarty, W.E. Holley, S. Butterfield, Effect of turbulence variation on extreme loads prediction for wind turbines. J. Sol. Energy Eng. 124(4), 387–395 (2002). https://doi.org/10.1115/1.1510137

    Article  Google Scholar 

  30. B.D.O. Anderson, J.B. Moore, Optimal Control: Linear Quadratic Methods (Dover, New York, 2007).

    Google Scholar 

  31. G. Betti, M. Farina, G.A. Guagliardi, A. Marzorati, R. Scattolini, Development of a control-oriented model of floating wind turbines. IEEE Trans. Cont. Sys. Tech. 22(1), 69–82 (2014). https://doi.org/10.1109/TCST.2013.2242073

    Article  Google Scholar 

  32. A. Fontanella, I. Bayati, M. Belloli, Linear coupled model for floating wind turbine control. Wind Eng. 42(2), 115–127 (2018). https://doi.org/10.1177/0309524X18756970

    Article  Google Scholar 

  33. V. Nava, H. Bagbanci, C. Guedes Soares, F. Arena, On the response of a spar floating wind turbine under the occurrence of extreme events, in Proceedings of the ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), Nantes, France, June 9–14 (2013). https://doi.org/https://doi.org/10.1115/OMAE2013-11140

  34. F. Lemmer, K. Müller, A. Pegalajar-Jurado, M. Borg, H. Bredmose, LIFES50+ D4.1: Simple numerical models for upscaled design. University of Stuttgart, Germany, and DTU Wind Energy, Denmark (2016)

  35. N. Johnson, J. Jonkman, A. Wright, G. Hayman, A. Robertson, Verification of floating offshore wind linearization functionality in OpenFAST. J. Phys. 1356(012022), 1–23 (2019). https://doi.org/10.1088/1742-6596/1356/1/012022

    Article  Google Scholar 

  36. J.M. Jonkman, M.L. Buhl Jr., FAST user’s guide. Technical Report NREL/TP-500–38230. Natl. Renew. Energy Lab. (2005)

  37. M. Shan, Load Reducing Control for Wind Turbines: Load Estimation and Higher Level Controller Tuning Based on Disturbance Spectra and Linear Models (Fraunhofer Verlag, Germany, 2018).

    Google Scholar 

  38. J.M. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500–38060. Natl. Renew. Energy Lab. (2009)

  39. J.M. Jonkman, Definition of the floating system for phase IV of OC3. Technical Report NREL/TP-500–47535. Natl. Renew. Energy Lab. (2010)

  40. D. Schlipf, E. Simley, F. Lemmer, L. Pao, P.W. Cheng, Collective pitch feedforward control of floating wind turbines using lidar. J. Ocean Wind Energy 2(4), 223–230 (2015). https://doi.org/10.17736/jowe.2015.arr04

    Article  Google Scholar 

  41. M. Al, A. Fontanella, D. van der Hoek, Y. Liu, M. Belloli, J.W. van Wingerden, Feedforward control for wave disturbance rejection on floating offshore wind turbines. J. Phys. 1618(022048), 1–10 (2020). https://doi.org/10.1088/1742-6596/1618/2/022048

    Article  Google Scholar 

  42. L. Landberg, Meteorology for Wind Energy: An Introduction (Wiley, UK, 2015).

    Book  Google Scholar 

  43. B. Skaare, F.G. Nielsen, T.D. Hanson, R. Yttervik, O. Havmøller, A. Rekdal, Analysis of measurements and simulations from the Hywind Demo floating wind turbine. Wind Energy 18(6), 1105–1122 (2015). https://doi.org/10.1002/we.1750

    Article  Google Scholar 

  44. F.D. Bianchi, H.D. Battista, R.J. Mantz, Wind Turbine Control Systems: Principles, Modeling and Gain Scheduling Design (Springer, London, 2007).

    Book  Google Scholar 

  45. S.K. Chakrabarti, Handbook of Offshore Engineering (Elsevier, Amsterdam, 2005).

    Google Scholar 

  46. F. Driscoll, J. Jonkman, A. Robertson, S. Sirnivas, B. Skaare, F.G. Nielsen, Validation of a FAST model of the Statoil-Hywind Demo floating wind turbine. Energy Procedia 94, 3–19 (2016). https://doi.org/10.1016/j.egypro.2016.09.181

    Article  Google Scholar 

  47. M. Karimirad, T. Moan, A simplified method for coupled analysis of floating offshore wind turbines. Mar. Struct. 27, 45–63 (2012). https://doi.org/10.1016/j.marstruc.2012.03.003

    Article  Google Scholar 

  48. J.M.J. Journée, W.W. Massie, Offshore Hydromechanics (Delft University of Technology, Delft, 2001).

    Google Scholar 

  49. T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control (Wiley, UK, 2011).

    Book  Google Scholar 

  50. C.L. Bottasso, A. Croce, Power curve tracking with tip speed constraint using LQR regulators. Scientific Report DIA-SR 09–04, Politecnico di Milano (2009)

  51. B. Fischer, Reducing rotor speed variations of floating wind turbines by compensation of non-minimum phase zeros, in Proceedings of the European Wind Energy Association Annual Event (EWEA 2012), Copenhagen, Denmark (2012).

  52. H. Suzuki, A. Sato, Load on turbine blade induced by motion of floating platform and design requirement for the platform, in Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2007), San Diego, California, USA, June 10–15 (2007). https://doi.org/https://doi.org/10.1115/OMAE2007-29500

  53. M.S. Siddiqui, A. Rasheed, T. Kvamsdal, M. Tabib, Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. Energy Procedia 80, 312–320 (2015). https://doi.org/10.1016/j.egypro.2015.11.435

    Article  Google Scholar 

  54. R. Siavashi, Sensitivity analysis of the dynamic response of floating wind turbines. Master Thesis, Geophysical Institute, University of Bergen, Bergen, Norway (2018)

  55. L. Li, Y. Liu, Z. Yuan, Y. Gao, Dynamic and structural performances of offshore floating wind turbines in turbulent wind flow. Ocean Eng. 179, 92–103 (2019). https://doi.org/10.1016/j.oceaneng.2019.03.028

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Luiz da Cunha Barroso Ramos.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha Barroso Ramos, R.L. Effect of turbulence intensity on the linear quadratic control of spar buoy floating wind turbines. Mar Syst Ocean Technol 16, 84–98 (2021). https://doi.org/10.1007/s40868-021-00098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-021-00098-4

Keywords

Navigation