Skip to main content
Log in

Dynamics of a fractional-order epidemiological model for computer viruses

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we consider a fractional-order epidemiological model for computer viruses to study memory effects on population dynamics. This model is derived from a well-known integer-order epidemiological model and the Caputo fractional derivative. Our objective is to provide a rigorous mathematical analysis for dynamics of the fractional-order model. Here, positivity, linear invariant, asymptotic stability properties including local and global asymptotic stability, uniform and Mittag-Leffler stability are established. It is worth noting that the stability properties are investigated by a simple approach, which is based on stability theory for fractional-order dynamical systems and an appropriate linear Lyapunov function. As an important consequence, dynamical properties of the fractional-order model are determined fully. Additionally, a set of numerical experiments is conducted to support the theoretical findings. As we expect, the numerical results are consistent with the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the fndings of this study are available within the article.

Code availability

Not applicable.

References

  1. Agarwal, R.P., O’Regan, D., Hristova, S.: Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math. 60, 653–676 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguila-Camacho, N., Duarte-Mermoud, A.M., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almeida, R.: Analysis of a fractional SEIR model with treatment. Appl. Math. Lett. 84, 56–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  Google Scholar 

  5. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2021)

    MATH  Google Scholar 

  6. Baleanu, D., Agarwal, R.V.: Fractional calculus in the sky. Adv. Differ. Equ. 117 (2021)

  7. Bonyah, E., Atangana, A., Khan, M.A.: Modeling the spread of computer virus via Caputo fractional and the beta-derivative. Asia Pacific J. Comput. Eng. 4, 1 (2017)

    Article  Google Scholar 

  8. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13, 529–539 (1967)

    Article  Google Scholar 

  9. Cohen, F.: Computer virus: theory and experiments. Comput. Security 6, 22–35 (1987)

    Article  Google Scholar 

  10. Dang, Q.A., Hoang, M.T.: Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. J. Comput. Appl. Math. 374, 112753 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dang, Q.A., Hoang, M.T.: Numerical dynamics of nonstandard finite difference schemes for a computer virus propagation model, International Journal of. Dyn. Control 8, 772–778 (2020)

    Article  MathSciNet  Google Scholar 

  12. Dang, Q.A., Hoang, M.T., Dang, Q.L.: Nonstandard finite difference schemes for solving a modified epidemiological model for computer viruses. J. Comput. Sci. Cybernet. 32, 171–185 (2018)

    Google Scholar 

  13. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  14. Diethelm, K.: Monotonicity of functions and sign changes of their Caputo derivatives. Fraction. Calculus Appl. Anal. 19, 561–566 (2016). https://doi.org/10.1515/fca-2016-0029

    Article  MathSciNet  MATH  Google Scholar 

  15. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71, 613–619 (2013)

    Article  MathSciNet  Google Scholar 

  16. Dokuyucu, M.A., Dutta, H., Yildirim, C.: Application of non-local and non-singular kernel to an epidemiological model with fractional order. Math. Methods Appl. Sci. 44, 3468–3484 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, A.J., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Freihat, A.A., Zurigat, M., Handam, A.H.: The multi-step homotopy analysis method for modified epidemiological model for computer viruses. Afrika Matematika 26, 585–596 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gan, C., Yang, X., Zhu, Q., Jin, J., He, L.: The spread of computer virus under the effect of external computers. Nonlinear Dyn. 73, 1615–1620 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate. Appl. Math. Comput. 222, 265–274 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Gan, C., Yang, X., Liu, W., Zhu, Q.: A propagation model of computer virus with nonlinear vaccination probability. Commun. Nonlinear Sci. Numer. Simul. 19, 92–100 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ghosh, U., Pal, S., Banerjee, M.: Memory effect on Bazykin’s prey-predator model: Stability and bifurcation analysis. Chaos Solitons Fractals 143, 110531 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoang, M.T.: Lyapunov Functions for Investigating Stability Properties of a Fractional-Order Computer Virus Propagation Model. Qualit. Theory Dyn. Syst. 20, 74 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoang, M.T., Nagy, A.M.: Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes. Chaos Solitons Fractals 123, 24–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hu, Z., Wang, H., Liao, F., Ma, W.: Stability analysis of a computer virus model in latent period. Chaos Solitons Fractals 75, 20–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kephart, J.O., White, S.R., Chess, D.M.: Computers and epidemiology. IEEE Spectrum 30, 20–26 (1993)

    Article  Google Scholar 

  27. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, London (2002)

    MATH  Google Scholar 

  28. Kheiri, H., Jafari, M.: Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment. J. Comput. Appl. Math. 346, 323–339 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204, 1st edn. Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  30. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)

    Book  MATH  Google Scholar 

  31. Li, C., Zeng, F.: Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 22, 1230014 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Opt. 34(2), 149–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332, 709–726 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55, 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  37. Matignon, D.: Stability result on fractional differential equations with applications to control processing. Computat. Eng. Syst. Appl. 2, 963–968 (1996)

    Google Scholar 

  38. Murray, W.: The application of epidemiology to computer viruses. Comput. Security 7, 139–150 (1988)

    Article  Google Scholar 

  39. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186, 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Piqueira, J.R.C., de Vasconcelos, A.A., Gabriel, C.E.C.J., Araujo, V.O.: Dynamic models for computer viruses. Comput. Security 27, 355–359 (2008)

    Article  Google Scholar 

  41. Piqueira, J.R.C., Araujo, V.O.: A modified epidemiological model for computer viruses. Appl. Math. Comput. 213, 355–360 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Piqueira, J.R.C., Batistela, C.M.: Considering quarantine in the SIRA malware propagation model. Math. Prob. Eng. 2019, 6467104 (2019). https://doi.org/10.1155/2019/6467104

    Article  Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  44. Ren, J., Xu, Y.: A compartmental model for computer virus propagation with kill signals. Phys. A 486, 446–454 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grunwald-Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902–917 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  48. Wang, F., Yang, Y.: Fractional order Barbalat’s lemma and its applications in the stability of fractional order nonlinear systems. Math. Modell. Anal. 22, 503–513 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, L.-X., Yang, X., Zhua, Q., Wen, L.: A computer virus model with graded cure rates. Nonlinear Anal. Real World Appl. 14, 414–422 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, L.-X., Yang, X.: A new epidemic model of computer viruses. Commun. Nonlinear Sci. Numer. Simul. 19, 1935–1944 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, Q., Yang, X., Yang, L.-X., Zhang, X.: A mixing propagation model of computer viruses and countermeasures. Nonlinear Dyn. 73, 1433–1441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and anonymous referees for useful and valuable comments that led to a great improvement of the paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Tuan Hoang.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest regarding the publication of this article.

Ethical standard

The author state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Communicated by José Alberto Cuminato.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, M.T. Dynamics of a fractional-order epidemiological model for computer viruses. São Paulo J. Math. Sci. (2023). https://doi.org/10.1007/s40863-023-00382-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40863-023-00382-8

Keywords

Mathematics Subject Classification

Navigation