Skip to main content
Log in

Global stability of solutions with large initial conditions for the Navier–Stokes equations with damping

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We prove that, under a suitable integrable condition, there is global stability of strong solutions for the 3D incompressible Navier–Stokes equations with a damping term which, consequently, provides a new class of global strong large solutions. Besides this, we prove that the system preserves helical symmetry and that, in this case, there is stability. Finally, if some parameters are small, we establish a connection between the stability of the system with and without the damping term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benvenutti, M., Ferreira, L.: Existence and stability of global large strong solutions for the Hall-MHD system. Differ. Intgr. E. 29(9/10), 977–1000 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Cai, X., Jiu, Q.: Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J. Math. Anal. Appl. 343, 799–809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Cambridge Univeristy Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Friedman, A.: Partial Differential Equations. Dover Publications, Mineola (2008)

    Google Scholar 

  5. Gallagher, I., Iftimie, D., Planchon, F.: Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier 53, 1387–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gui, G., Zhang, P.: Stability to the global large solutions of the 3-D Navier-Stokes equations. Adv. Math. 225, 1248–1284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iftimie, D.: The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations. Bull. Soc. Math. France 127, 473–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, Y., Li, K.: Time-periodic strong solutions of the 3D Navier-Stokes equations with damping. Electron. J. Differ. Equ. 244, 1–11 (2017)

    MathSciNet  Google Scholar 

  9. Kim, Y., Li, K., Kim, C.: Uniqueness and regularity for the 3D Boussinesq system with damping. Annali Dell’Univertita’Di Ferrara 67, 149–173 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, X., Li, Y.: On the stability of global solutions to the 3D Boussinesq system. Nonlinear Anal. 95, 580–591 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahalov, A., Titi, E., Leibovich, S.: Invariant Helical subspace for the Navier-Stokes equations. Arch. Ration. Mech. Anal. 112, 193–222 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Markowich, P., Titi, E., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model. Nonlinearity 29(4), 1291–1328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mucha, P.B.: Stability of 2D incompressible flows in \({\mathbb{R}}^{3}\). J. Diff. Eqs. 245(9), 2355–2367 (2008)

    Article  MATH  Google Scholar 

  14. Ponce, G., Racke, R., Sideris, T.C., Titi, E.: Global Stability of Large Solutions to the 3D Navier-Stokes Equations. Comm. Math. Phys. 159, 329–341 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robinson, J.C., Hajduk, K.W.: Energy equality for the 3D critical convective Brinkman-Forchheimer equations. J. Differ. Equ. 263, 7141–7161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rusin, W.: Navier-Stokes equations, stability and minimal perturbations of global solutions. J. Math. Anal. Appl. 386(1), 115–124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, New York (2001)

    MATH  Google Scholar 

  18. Ugurlu, D.: On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal. 68, 1986–1992 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, B., Lin, S.: Existence of global attractors for the three-dimensional Brinkman-Forchheimer equations. Math. Methods Appl. Sci. 31, 1479–1495 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang W., Zhou G. Remarks on the regularity criterion of the Navier-Stokes equations with nonlinear damping, Mathematical Problems in Engineering, 1-5, 2015

  21. Yang, R., Yang, X.: Asymptotic stability of 3D Navier-Stokes equations with damping. Appl. Math. Lett. 116, 1–7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ye, Z.: Global existence of strong solution to the 3D micropolar equations with a damping term. Appl. Math. Lett. 83, 188–193 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. You, Y., Zhao, C., Zhou, S.: The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discr. Cont. Dyn. Syst. 32, 3787–3800 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zelik, S., Kalantarov, V.: Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11, 2037–2054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z., Wu, X., Lu, M.: On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. J. Math. Anal. Appl. 377, 414–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhong, X.: A note on the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping. Electron. J. Qual. Theory Differ. Equ. 15, 1–4 (2019)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Y.: Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping. Applied Math. Lett. 25, 1822–1825 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.: Asymptotic stability for the 3D Navier-Stokes equations. Commun. Partial Differ. Equ. 30(1–3), 323–333 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Y.: Asymptotic stability for the Navier-Stokes equations in the marginal class. Proc. Royal Soc. Edinb. Sect. A Math. 136, 1099–1109 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Y.: Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows. Nonlinearity 21, 2061–2071 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maicon J. Benvenutti.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Communicated by Gustavo Ponce.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenutti, M.J. Global stability of solutions with large initial conditions for the Navier–Stokes equations with damping. São Paulo J. Math. Sci. 16, 915–931 (2022). https://doi.org/10.1007/s40863-022-00298-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-022-00298-9

Keywords

Mathematics Subject Classification

Navigation