Skip to main content
Log in

On Jordan doubles of slow growth of Lie superalgebras

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

To an arbitrary Lie superalgebra L we associate its Jordan double \({\mathcal Jor}(L)\), which is a Jordan superalgebra. This notion was introduced by the second author before (Shestakov in Sib Adv Math 9(2):83–99, 1999). Now we study further applications of this construction. First, we show that the Gelfand–Kirillov dimension of a Jordan superalgebra can be an arbitrary number \(\{0\}\cup [1,+\,\infty ]\). Thus, unlike the associative and Jordan algebras (Krause and Lenagan in Growth of algebras and Gelfand–Kirillov dimension, AMS, Providence, 2000; Martinez and Zelmanov in J Algebra 180(1):211–238, 1996), one hasn’t an analogue of Bergman’s gap (1, 2) for the Gelfand–Kirillov dimension of Jordan superalgebras. Second, using the Lie superalgebra \({\mathbf {R}}\) of de Morais Costa and Petrogradsky (J Algebra 504:291–335, 2018), we construct a Jordan superalgebra \({\mathbf {J}}={\mathcal Jor}({{\mathbf {R}}})\) that is nil finely \({\mathbb {Z}}^3\)-graded (moreover, the components are at most one-dimensional), the field being of characteristic not 2. This example is in contrast with non-existence of such examples (roughly speaking, analogues of the Grigorchuk and Gupta–Sidki groups) of Lie algebras in characteristic zero (Martinez and Zelmanov in Adv Math 147(2):328–344, 1999) and Jordan algebras in characteristic not 2 (Zelmanov, E., A private communication). Also, \({\mathbf {J}}\) is just infinite but not hereditary just infinite. A similar Jordan superalgebra of slow polynomial growth was constructed before Petrogradsky and Shestakov (Fractal nil graded Lie, associative, poisson, and Jordan superalgebras. arXiv:1804.08441, 2018). The virtue of the present example is that it is of linear growth, of finite width 4, namely, its \(\mathbb N\)-gradation by degree in the generators has components of dimensions \(\{0,2,3,4\}\), and the sequence of these dimensions is non-periodic. Third, we review constructions of Poisson and Jordan superalgebras of Petrogradsky and Shestakov (2018) starting with another example of a Lie superalgebra introduced in Petrogradsky (J Algebra 466:229–283, 2016). We discuss the notion of self-similarity for Lie, associative, Poisson, and Jordan superalgebras. We also suggest the notion of a wreath product in case of Jordan superalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alahmadi, A., Al-Sulami, H., Jain, S.K., Zelmanov, E.: Matrix wreath products of algebras and embedding theorems. preprint arXiv:1703.08734

  2. Bahturin, Yu.A.: Identical Relations in Lie Algebras. VNU Science Press, Utrecht (1987)

  3. Bahturin, Yu.A., Mikhalev, A.A., Petrogradsky, V.M., Zaicev, M.V.: Infinite Dimensional Lie Superalgebras, vol. 7. de Gruyter, Berlin (1992)

  4. Bahturin, Yu.A., Sehgal, S.K., Zaicev, M.V.: Group gradings on associative algebras. J. Algebra 241(2), 677–698 (2001)

  5. Bartholdi, L.: Lie algebras and growth in branch groups. Pac. J. Math. 218(2), 241–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartholdi, L.: Branch rings, thinned rings, tree enveloping rings. Isr. J. Math. 154, 93–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartholdi, L.: Self-similar Lie algebras. J. Eur. Math. Soc. (JEMS) 17(12), 3113–3151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartholdi, L., Grigorchuk, R.I.: Lie methods in growth of groups and groups of finite width. Computational and geometric aspects of modern algebra, pp. 1–27, London Mathematical Society. Lecture Note Series, 275, Cambridge University Press, Cambridge (2000)

  9. de Morais Costa, O.A., Petrogradsky, V.: Fractal just infinite nil Lie superalgebra of finite width. J. Algebra 504, 291–335 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dixmier, J.: Enveloping Algebras. AMS, Rhode Island (1996)

    MATH  Google Scholar 

  11. Fialowski, A.: Classification of graded Lie algebras with two generators. Mosc. Univ. Math. Bull. 38(2), 76–79 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Futorny, F., Kochloukova, D.H., Sidki, S.N.: On self-similar Lie algebras and virtual endomorphisms. Math. Z. (2018). https://doi.org/10.1007/s00209-018-2146-6

    Article  MATH  Google Scholar 

  13. Grigorchuk, R.I.: On the Burnside problem for periodic groups. Funktsional. Anal. i Prilozhen. 14(1), 53–54 (1980)

    Article  MathSciNet  Google Scholar 

  14. Grigorchuk, R.I.: Just Infinite Branch Groups. New Horizons in Pro-\(p\) Groups, pp. 121–179. Birkhauser Boston, Boston (2000)

    Book  MATH  Google Scholar 

  15. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182(3), 385–388 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gupta, N., Sidki, S.: Some infinite p-groups. Algebra Logic 22, pp. 421–424 (1983). (Algebra Logika, Trans.) 22(5) pp. 584–589 (1983)

  17. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)

    Article  MATH  Google Scholar 

  18. Kac, V.G.: Classification of simple \({\mathbb{Z}}\)-graded Lie superalgebras and simple Jordan superalgebras. Commun. Algebra 5, 1375–1400 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kac, V.G., Martinez, C., Zelmanov, E.: Graded simple Jordan superalgebras of growth one. Mem. Am. Math. Soc. 711, 140p (2001)

    MathSciNet  MATH  Google Scholar 

  20. Kantor, I.L.: Jordan and Lie superalgebras determined by a Poisson algebra. In: Aleksandrov, I.A. (ed.) et al., Second Siberian winter school Algebra and Analysis. Proceedings of the second Siberian school, Tomsk State University, Tomsk, Russia, 1989. American Mathematical Society Series 2, vol. 151, pp. 55–80 (1992)

  21. King, D., McCrimmon, K.: The Kantor construction of Jordan superalgebras. Commun. Algebra 20(1), 109–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krasner, M., Kaloujnine, L.: Produit complet de groupes de permutations et problème d’extension de groupes, I, II, III. Acta Univ. Szeged 13, 208–230 (1950)

    MATH  Google Scholar 

  23. Krasner, M., Kaloujnine, L.: Produit complet de groupes de permutations et problème d’extension de groupes, I, II. III. Acta Univ. Szeged 14, 39–66 (1951)

    MATH  Google Scholar 

  24. Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand–Kirillov Dimension. AMS, Providence (2000)

    MATH  Google Scholar 

  25. Lenagan, T.H., Smoktunowicz, Agata: An infinite dimensional affine nil algebra with finite Gelfand–Kirillov dimension. J. Am. Math. Soc. 20(4), 989–1001 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martinez, C., Zelmanov, E.: Jordan algebras of Gelfand–Kirillov dimension one. J. Algebra 180(1), 211–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Martinez, C., Zelmanov, E.: Nil algebras and unipotent groups of finite width. Adv. Math. 147(2), 328–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martinez, C., Zelmanov, E.: On Lie rings of torsion groups. Bull. Math. Sci. 6(3), 371–377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nekrashevych, V.: Self-Similar Groups. Mathematical Surveys and Monographs, vol. 117. American Mathematical Society (AMS), Providence (2005)

    Book  MATH  Google Scholar 

  30. Passi, I.B.S.: Group Rings and their Augmentation Ideals. Lecture Notes in Mathematics, vol. 715. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  31. Petrogradsky, V.M.: On Lie algebras with nonintegral \(q\)-dimensions. Proc. Am. Math. Soc. 125(3), 649–656 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Petrogradsky, V.M.: Examples of self-iterating Lie algebras. J. Algebra 302(2), 881–886 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Petrogradsky, V.: Fractal nil graded Lie superalgebras. J. Algebra 466, 229–283 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petrogradsky, V.: Nil Lie \(p\)-algebras of slow growth. Commun. Algebra. 45(7), 2912–2941 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Petrogradsky, V.M., Razmyslov, Yu.P., Shishkin, E.O.: Wreath products and Kaluzhnin-Krasner embedding for Lie algebras. Proc. Am. Math. Soc. 135, 625–636 (2007)

  36. Petrogradsky, V.M., Shestakov, I.P.: Examples of self-iterating Lie algebras, 2. J. Lie Theory 19(4), 697–724 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Petrogradsky, V.M., Shestakov, I.P.: Self-similar associative algebras. J. Algebra 390, 100–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petrogradsky, V.M., Shestakov, I.P.: On properties of Fibonacci restricted Lie algebra. J. Lie Theory 23(2), 407–431 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Petrogradsky, V.M., Shestakov, I.P., Zelmanov, E.: Nil graded self-similar algebras. Groups Geom. Dyn. 4(4), 873–900 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Petrogradsky, V., Shestakov, I.P.: Fractal nil graded Lie, associative, poisson, and Jordan superalgebras. (2018). preprint, arXiv:1804.08441

  41. Rozhkov, A.V.: Lower central series of a group of tree automorphisms, Math. Notes 60(2), pp. 165–174 (1996). (Mat. Zametk, Trans.) 60(2), pp. 225–237 (1996)

  42. Scheunert, M.: The Theory of Lie Superalgebras. Lecture Notes In Mathematics, vol. 716. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  43. Shalev, A., Zelmanov, E.I.: Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra. J. Algebra 189(2), 294–331 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shalev, A., Zelmanov, E.I.: Narrow algebras and groups. J. Math. Sci. (N. Y.) 93(6), 951–963 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shestakov, I.P.: Quantization of Poisson superalgebras and speciality of Jordan Poisson superalgebras. Algebra i Logika 32(5), pp. 571–584 (1993). (Algebra and Logic: English Trans.) 32(5), pp. 309–317 (1993)

  46. Shestakov, I.P.: Alternative and Jordan superalgebras. Sib. Adv. Math. 9(2), 83–99 (1999)

    MATH  Google Scholar 

  47. Shestakov, I.P., Zelmanov, E.: Some examples of nil Lie algebras. J. Eur. Math. Soc. (JEMS) 10(2), 391–398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sidki, S.N.: Functionally recursive rings of matrices—Two examples. J. Algebra 322(12), 4408–4429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Small, L.W., Zelmanov, E.I.: On point modules. Publ. Math. 69(3), 387–390 (2006)

    MathSciNet  MATH  Google Scholar 

  50. Zelmanov, E.I.: Lie ring methods in the theory of nilpotent groups. Groups ’93 Galway/St. Andrews, Vol. 2, pp. 567–585, London Mathematical Society. Lecture Note Series, 212, Cambridge University Press, Cambridge (1995)

  51. Zhelyabin, V.N., Panasenko, A.S.: Hersteins construction for just infinite superalgebras. Sib. Electron. Math. Rep. 14, 1317–1323 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Petrogradsky.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Victor Petrogradsky was partially supported by Grants CNPq 309542/2016-2, FAPESP 2016/18068-9. I. P. Shestakov was partially supported by Grants FAPESP 2014/09310-5, CNPq 303916/2014-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrogradsky, V., Shestakov, I.P. On Jordan doubles of slow growth of Lie superalgebras. São Paulo J. Math. Sci. 13, 158–176 (2019). https://doi.org/10.1007/s40863-019-00122-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-019-00122-x

Keywords

Mathematics Subject Classification

Navigation