Skip to main content
Log in

On the periodic solutions of perturbed 4D non-resonant systems

  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We provide sufficient conditions for the existence of periodic solutions of a 4D non-resonant system perturbed by smooth or non-smooth functions. We apply these results to study the small amplitude periodic solutions of the non-linear planar double pendulum perturbed by smooth or non-smooth function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. International Series of Monographs in Physics, vol. 4. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  2. Bogoliubov, N.N.: On Some Statistical Methods in Mathematical Physics. Izv. vo Akad. Nauk Ukr. SSR, Kiev (1945)

  3. Bogoliubov, N.N., Krylov, N.: The Application of Methods of Nonlinear Mechanics in the Theory of Stationary Oscillations. Publ. 8 of the Ukrainian Acad. Sci. Kiev (1934)

  4. Buică, A., Françoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MATH  MathSciNet  Google Scholar 

  5. di Bernardo, M., et al.: Bifurcation in nonsmooth dynamical systems. Appl. Nonlinear Math. 4, 629–701 (2005)

    Google Scholar 

  6. Fatou, P.: Sur le mouvement d’un systàme soumis à des forces à courte période. Bull. Soc. Math. Fr. 56, 98–139 (1928)

    MATH  MathSciNet  Google Scholar 

  7. Filippov, A.F.: Differential equations with discontinuous righthand side. Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  8. Iro, H.: A Modern Approach to Classical Mechanics. World Scientific Publishing Co., Inc, River Edge (2002)

    Book  MATH  Google Scholar 

  9. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the periodic solutions of a perturbed double pendulum. São Paulo J. Math. Sci. 5, 317–330 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Llibre, J., Teixeira, M.A.: On the stable limit cycle of a weight-driven pendulum clock. Eur. J. Phys. 31, 1249–1254 (2010)

    Article  MATH  Google Scholar 

  11. Malkin, I.G.: Some Problems of the Theory of Nonlinear Oscillations, (Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit, Moscow (1956)

  12. Roseau, M.: Vibrations non linéaires et théorie de la stabilité, (French) Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin (1966)

  13. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  14. Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector field. In: International Conference on Differential Equation, Lisboa, 1995. World Sci. Publ., River Edge, NJ, pp. 207–223 (1998)

Download references

Acknowledgments

The first author is partially supported by a MINECO/FEDER Grant MTM20 08-03437 and MTM2013-40998-P, an AGAUR grant number 2013SGR-568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, and a FEDER-UNAB 10-4E-378. The second author is partially supported by a FAPESP-BRAZIL grant 2013/16492-0. The third authors is partially supported by a FAPESP-BRAZIL grant 2012/18780-0. The three authors are also supported by a CAPES CSF-PVE Grant 88881.030454/2013-01 from the program CSF-PVE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Teixeira.

Appendix: Basic concepts on Filippov systems

Appendix: Basic concepts on Filippov systems

We say that a vector field \(X:D\subset \mathbb {R}^n\rightarrow \mathbb {R}^n\) is piecewise continuous if its domain of definition D can be partitioned in a finite collection of connected, open and disjoint sets \(D_i\), \(i=1,\cdots ,k\), such that \(\cup \overline{D_i}=D\), and the vector field \(X\big |_{\overline{D}_i}\) is continuous for \(i=1,\cdots ,k\).

We denote by \(S_X\subset \partial D_1\cup \cdots \cup \partial D_k\) the set of points where the vector field X is discontinuous. By assumptions, the set \(S_X\) has measure zero.

If \(\Sigma \subset S_X\) is a manifold of codimension one, then \(\Sigma \) can be decomposed as the union of the closure of the following three kind of regions (see Fig. 5):

$$\begin{aligned} \Sigma ^c= & {} \left\{ x\in \Sigma : (Xh)(Yh)(x)>0\right\} ;\\ \Sigma ^e= & {} \left\{ x\in \Sigma : (Xh)(x)>0 \text { e } (Yh)(x)<0\right\} ;\\ \Sigma ^s= & {} \left\{ x\in \Sigma : (Xh)(x)<0 \text { e } (Yh)(x)>0\right\} . \end{aligned}$$
Fig. 5
figure 5

Crossing region \((\Sigma ^c)\), escaping region \((\Sigma ^e)\) and sliding region \((\Sigma ^s)\)

For \(p\in \Sigma ^e\cup \Sigma ^s\) we define the Sliding Vector Field as

$$\begin{aligned} Z_s(p)=\dfrac{1}{(Yh)(p)-(Xh)(p)}\left( (Yh)(Xh)(p)-(Xh)(Yh)(p)\right) . \end{aligned}$$
(35)

Consider the following equation

$$\begin{aligned} \dot{x}=X(x), \end{aligned}$$
(36)

where \(X:D\subset \mathbb {R}^n\rightarrow \mathbb {R}^n\) is a piecewise continuous vector field. The local solution of the equation (36) passing through a point \(p\in \Sigma \) is given by the Filippov convention:

  1. (i)

    for \(p\in \Sigma ^c\) such that \((Xh)(p),(Yh)(p)>0\) and taking the origin of time at p, the trajectory is defined as \(\varphi _Z(t,p)=\varphi _Y(t,p)\) for \(t\in I_p\cap \{t<0\}\) and \(\varphi _Z(t,p)=\varphi _X(t,p)\) for \(t\in I_p\cap \{t>0\}\). For the case \((Xh)(p),(Yh)(p)<0\) the definition is the same reversing time;

  2. (ii)

    for \(p\in \Sigma ^e\cup \Sigma ^s\) such that \(Z_s(p)\ne 0\), \(\varphi _Z(t,p)=\varphi _{Z_s}(t,p)\) for \(t\in I_p\subset \mathbb {R}\).

Here \(\varphi _W\) denotes the flow of a vector field W.

For more details about discontinuous differential equation see Filippov’s book [7].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Novaes, D.D. & Teixeira, M.A. On the periodic solutions of perturbed 4D non-resonant systems. São Paulo J. Math. Sci. 9, 229–250 (2015). https://doi.org/10.1007/s40863-015-0017-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-015-0017-1

Keywords

Mathematics Subject Classification

Navigation