Skip to main content
Log in

Fluorescence in situ hybridization analysis of endosymbiont genera reveals novel infection patterns in a tomato-infesting Bemisia tabaci population from Brazil

  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

The Bemisia tabaci cryptic species complex harbors a diversified flora of primary and secondary endosymbionts, which plays crucial roles in many aspects of the insect biology. The endosymbiont infection pattern is dependent upon many factors, including host plant and geographic origin. In Brazil, the invasion of B. tabaci Middle East-Asia Minor-1 (MEAM 1) populations was observed in tomato (Solanum lycopersicum L.) fields in the 1990s, which was followed by severe begomovirus epidemics. Here we confirmed the vertical transmission of “Candidatus Portiera” and the localization of secondary endosymbionts in distinct B. tabaci developmental stages. Hamiltonella defensa was detected in bacteriocytes but also scattered in the leg muscles as well as in the male heads. Wolbachia-specific signals were found in eggs, nymphs, male adults, and female gonads in predominant association with bacteriocytes. These results were somewhat surprising since Wolbachia infection is rarely found in MEAM 1 populations from the Old World. Our results reinforce the notion that endosymbiont infection pattern may vary according to the insect population, gender, developmental stage, and geographic origin. This characterization will provide tools to study the endosymbiont function in the transmission ability/efficiency of a complex of tomato-infecting bipartite begomoviruses by B. tabaci under Neotropical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed MZ, Shatters RG, Ren SX, Jin GH, Mandour NS, Qiu BL (2009) Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations. J Appl Entomol 133:733–741

    Article  CAS  Google Scholar 

  • Ahmed MZ, Ren SX, Xue X, Li XX, Jin GH, Qiu BL (2010) Prevalence of endosymbionts in Bemisia tabaci populations and their in vivo sensitivity to antibiotics. Curr Microbiol 61:322–328

    Article  CAS  PubMed  Google Scholar 

  • Ahmed MZ, De Barro PJ, Ren SX, Greeff JM, Qiu BL (2013) Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex. PLoS ONE 8:e53084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Baumann P, Munson MA, Lai CY, Clark MA, Bauman L, Moran NA, Campbell BC (1993) Origin and properties of bacterial endosymbionts of aphids, whiteflies, and mealybugs. Am Soc Microbiol News 59:21–24

    Google Scholar 

  • Bensadia F, Boudreault S, Guay JF, Michaud D, Cloutier C (2005) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52:146–157

    Article  PubMed  Google Scholar 

  • Berry SD, Fondong VN, Rey C, Rogan D, Fauquet CM, Brown JK (2004) Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in Sub-Saharan Africa. Entomol Soc Am 97:852–859

    Article  CAS  Google Scholar 

  • Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS (2013) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 79:569–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boiteux LS, Fonseca MEN, Simon PW (1999) Effects of plant tissue and DNA purification method on randomly amplified polymorphic DNA-based genetic fingerprinting analysis in carrot. J Am Soc Hortic Sci 124:32–38

    CAS  Google Scholar 

  • Braquart-Varnier C, Lachat M, Herbinière J, Johnson M, Caubet Y, Bouchon D, Sicard M (2008) Wolbachia mediate variation of host immunocompetence. PLoS ONE 3:e3286

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JK (2007) The Bemisia tabaci complex: Genetic and phenotypic variability drives begomovirus spread and virus diversification. Online. APSnet Features doi: 10.1094/APSnetFeature-2007-0107. Accessed on August 2014

  • Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. Wiley, New York

    Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E (2009) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 102:413–418

    Article  Google Scholar 

  • Chu D, Gao CS, De Barro P, Zhang YJ, Wan FH, Khan IA (2011) Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: Comparison of secondary symbionts from biotypes B and Q in China. Bull Entomol Res 101:477–486

    Article  CAS  PubMed  Google Scholar 

  • Clark MA, Bauman L, Munson MA, Bauman P, Campbell BC, Duffus JE, Osborne LS, Moran NA (1992) The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodidae) constitue a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol 25:119–123

    Article  Google Scholar 

  • Costa AS, Costa CL, Sauer HFG (1973) Surto de mosca branca em culturas do Paraná e São Paulo. Anais da Soc Entomol do Brasil 1:20–30

    Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1119

    Article  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Everett KD, Thao M, Horn M, Dysynski GE, Baumann P (2005) Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int J Syst Evol Microbiol 55:1581–1587

    Article  CAS  PubMed  Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Article  Google Scholar 

  • Fernandes NAN (2010) Variabilidade genômica e geográfica de espécies de begomovírus em tomateiro e em dois gêneros de plantas daninhas no Brasil. MSc. in Fitopatology, University of Brasília

  • Fernandes FR, Albuquerque LC, Giordano LB, Boiteux LS, De Ávila AC, Inoue-Nagata AK (2008) Diversity and prevalence of Brazilian bipartite begomovirus species associated to tomatoes. Virus Genes 36:251–258

    Article  CAS  PubMed  Google Scholar 

  • Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Article  Google Scholar 

  • Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri G, Horowitz AR, Belausov E, Mozes-Daube N, Kontsedalov S, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracelular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F, Ghanim M (2010) The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo H, Qu Y, Liu X, Zhong W, Fang J (2014) Female-biased symbionts and Tomato yellow leaf curl virus infections in Bemisia tabaci. PLoS ONE 9:e84538

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Holden PR, Brookfiel FYJ, Jones P (1993) Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol Gen Genet 240:213–220

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZF, Xia F, Johnson KW, Brown CD, Bartom E, Tuteja JH, Stevens R, Grossman RL, Brumin M, White KP, Ghanim M (2013) Comparison of the genome sequences of “Candidatus Portiera aleyrodidarum” primary endosymbionts of the whitefly Bemisia tabaci B and Q biotypes. Appl Environ Microbiol 79:1757–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E, Gottlieb Y, Inbar M, Ghanim M (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Park J, Lee GS, Lee S, Akimoto SI (2013) Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE 8:e63817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marubayashi JM, Yuki VA, Rocha KCG, Mituti T, Pelegrinotti FM, Ferreira FZ, Moura MF, Navas-Castillo J, Moriones E, Pavan MA MA, Krause‐Sakate R (2013) At least two indigenous species of the Bemisia tabaci complex are present in Brazil. J Appl Entomol 137:113–121

    Article  Google Scholar 

  • Marubayashi JM, Kliot A, Yuki VA, Rezende JAM, Krause-Sakate R, Pavan MA, Ghanim M (2014) Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS ONE. doi:10.1371/journal.pone.0108363

    PubMed Central  PubMed  Google Scholar 

  • McDonald JH, Dunn K (2013) Statistical tests for measures of colocalization in biological microscopy. J Microsc 252:295–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Min KT, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94:10792–11079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M (2002) Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol Biol 11:577–584

    Article  CAS  PubMed  Google Scholar 

  • Moran N, Baumann P (1994) Phylogenetic of cytoplasmically inherited microorganisms of arthropod. Trends Ecol Evol 9:15–20

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, Wilcox JL (2003) A genomic perspective on nutrient provising by bacterial symbionts of insects. Proc Natl Acad Sci U S A 100:14543–14548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248

    Article  CAS  PubMed  Google Scholar 

  • Nirgianaki A, Banks GK, Frohlich DR, Veneti Z, Braig HR, Miller TA, Bedford ID, Markham PG, Savakis C, Bourtzis K (2003) Wolbachia infections of the whitefly Bemisia tabaci. Curr Microbiol 47:93–101

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Li X, Ge D, Wang S, Wu Q, Xie W, Jiai X, Chu D, Liu B, Xu B, Zhang Y (2012a) Factors affecting population dynamics of maternally transmitted endosymbionts in Bemisia tabaci. PLoS ONE 7:e30760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan HP, Li X, Zhang Y (2012b) Sex affects the infection frequencies of symbionts in Bemisia tabaci. Commun Integr Biol 5:337–339

    Article  PubMed Central  PubMed  Google Scholar 

  • Paprotka T, Boiteux LS, Fonseca MEN, Resende RO, Jeske H, Faria JC, Ribeiro SG (2010) Genomic diversity of sweet potato geminiviruses in a Brazilian germplasm bank. Virus Res 149:224–233

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SG, Melo LV, Boiteux LS, Kitajima EW, Faria JC (1994) Tomato infection by a geminiviruses in the Federal District, Brazil. Fitopatol Bras 19(Supl):330

    Google Scholar 

  • Ribeiro SG, Ambrozevícius LP, De Ávila AC, Bezerra IC, Calegário RF, Fernandes JJ, Lima MF, de Mello RN, Rocha H, Zerbini FM (2003) Distribution and genetic diversity of tomato-infecting begomovirus in Brazil. Arch Virol 148:281–295

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Ruan Y-M, Xu J, Liu S-S (2006) Effects of antibiotics on fitness of the B biotype and a non-B biotype of the whitefly Bemisia tabaci. Entomol Exp Appl 121:159–166

    Article  Google Scholar 

  • Santos CDG, De Ávila AC, Resende RO (2003) Estudo da interação de um begomovirus isolado de tomateiro com a mosca branca vetora. Fitopatol Bras 28:664–673

    Article  Google Scholar 

  • Santos-Garcia D, Farnier PA, Beitia F, Zchori-Fein E, Vavre F, Mouton L, Moya A, Latorre A, Silva FJ (2012) Complete genome sequence of “Candidatus Portiera aleyrodidarum” BT-QVLC, an obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci. J Bacteriol 194:6654–6655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simon C, Frati F, Beckembach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Škaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M (2010) Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol 10:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Škaljac M, Žanić K, Hrnčić S, Radonjić S, Perović T, Ghanim M (2013) Diversity and localization of bacterial symbionts in three whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea. Bull Entomol Res 103:48–59

    Article  PubMed  Google Scholar 

  • Su Q, Xie W, Wang S, Wu Q, Liu B, Fang Y, Xu B, Zhang Y (2014) The endosymbiont Hamiltonella increases the growth rate of its host Bemisia tabaci during periods of nutritional stress. PLoS ONE 9:e89002

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  CAS  PubMed  Google Scholar 

  • Thompson WMO (2011) Introduction: Whiteflies, Geminiviruses and recent events, (Chapter 1). In: Thompson WMO (ed) The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with Geminivirus-infected host plants. Springer Science Business Media B.V, Dordrecht, p 381

    Chapter  Google Scholar 

  • Thompson JD, Higgs DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc B Biol Sci 270:1857–1865

    Article  Google Scholar 

  • Zchori-Fein E, Brown JK (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 95:711–718

    Article  Google Scholar 

  • Zchori-Fein E, Lahav T, Freilich S (2014) Variations in the identity and complexity of endosymbiont combinations in whitefly hosts. Front Microbiol 5:1–7

    Article  Google Scholar 

  • Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B Biol Sci 265:509–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a joint Grant 564633/2010-0 CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Conselho de Aperfeiçoamento de Pessoal de Nível Superior) and Grant 2009/00102-2 from FAP-DF (Fundação de Apoio a Pesquisa do Distrito Federal).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita C. Pereira-Carvalho.

Additional information

Section Editor: F. Murilo Zerbini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blawid, R., Morgado, F.S., Souza, C.A. et al. Fluorescence in situ hybridization analysis of endosymbiont genera reveals novel infection patterns in a tomato-infesting Bemisia tabaci population from Brazil. Trop. plant pathol. 40, 233–243 (2015). https://doi.org/10.1007/s40858-015-0019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-015-0019-7

Keywords

Navigation