Skip to main content
Log in

MRI Measurements of the Cartilage Contact Pattern, Contact Area, and Contact Centroid of the Glenohumeral Joint During Abduction Under Static Conditions In Vivo

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to determine the changes in the cartilage contact pattern, contact area, and contact centroid between the humeral head and glenoid during abduction using magnetic resonance imaging (MRI) under static conditions in vivo. We hypothesized that as the glenohumeral abduction angle increases, the cartilage contact area increases and the contact pattern and contact centroid shift superiorly and anteriorly.

Methods

The present study comprised 14 Japanese men with no history of shoulder injury or disorders. MRI was performed in the following four postures: neutral posture with arms at the side of the trunk and postures at 30°, 60°, and 120° of thoracohumeral abduction, which corresponded to 18.6° ± 5.7°, 27.8° ± 7.0°, and 66.8° ± 13.1° of glenohumeral abduction, respectively. The cartilage contact pattern was determined from the signal intensity profiles of MR images using image analysis software.

Results

We observed that the contact area was independent of the thoracohumeral abduction angle. The contact area at 120° of thoracohumeral abduction was approximately 10% smaller than at other angles, although this difference was not statistically significant. The contact centroid was significantly shifted superiorly as the thoracohumeral abduction angle increased (p < 0.01), with a trend toward anterior movement.

Conclusion

These results confirmed that the contact pattern and contact centroid shifted superiorly and anteriorly. We believe that determining the contact pattern and contact area of the glenohumeral joint is useful for detecting abnormal shoulder joint movements and can guide the diagnosis, treatment, and rehabilitation of patients with shoulder disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available.

References

  1. Soslowsky, L. J., Flatow, E. L., Bigliani, L. U., Pawluk, R. J., Ateshian, G. A., & Mow, V. C. (1992). Quantitation of in situ contact areas at the glenohumeral joint: A biomechanical study. Journal of Orthopaedic Research, 10(4), 524–534. https://doi.org/10.1002/jor.1100100407

    Article  CAS  PubMed  Google Scholar 

  2. Motzkin, N. E., Itoi, E., Morrey, B. F., & An, K. N. (1998). Contribution of capsuloligamentous structures to passive static inferior glenohumeral stability. Clinical biomechanics, 13(1), 54–61. https://doi.org/10.1016/S0268-0033(97)00059-4

    Article  PubMed  Google Scholar 

  3. Warner, J. J., Bowen, M. K., Deng, X., Torzili, P. A., & Warren, R. F. (1999). Effect of joint compression on inferior stability of the glenohumeral joint. Journal of Shoulder and Elbow Surgery, 8(1), 31–36. https://doi.org/10.1016/S1058-2746(99)90051-4

    Article  CAS  PubMed  Google Scholar 

  4. Massimini, D. F., Boyer, P. J., Papannagari, R., Gill, T. J., Warner, J. P., & Li, G. (2012). In-vivo glenohumeral translation and ligament elongation during abduction and abduction with internal and external rotation. Journal of Orthopaedic Surgery and Research, 7, 29. https://doi.org/10.1186/1749-799X-7-29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soslowsky, L. J., Malicky, D. M., & Blasier, R. B. (1997). Active and passive factors in inferior glenohuimeral stabilization: A biomechanical model. Journal of Shoulder and Elbow Surgery, 6(4), 371–379. https://doi.org/10.1016/s1058-2746(97)90005-7

    Article  CAS  PubMed  Google Scholar 

  6. Mihata, T., McGarry, M. H., Pirolo, J. M., Kinoshita, M., & Lee, T. Q. (2012). Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: A biomechanical cadaveric study. The American Journal of Sports Medicine, 40(10), 2248–2255. https://doi.org/10.1177/0363546512456195

    Article  PubMed  Google Scholar 

  7. Ishihara, Y., Mihata, T., Tamboli, M., Nguyen, L., Park, K. J., McGarry, M. H., Takai, S., & Lee, T. Q. (2014). Role of the superior shoulder capsule in passive stability of the glenohumeral joint. Journal of Shoulder and Elbow Surgery, 23(5), 642–648. https://doi.org/10.1016/j.jse.2013.09.025

    Article  PubMed  Google Scholar 

  8. Howell, S. M., & Galinat, B. J. (1989). The glenoid-labral socket. A constrained articular surface. Clinical Orthopaedics and Related Research, 243, 122–125.

    Article  Google Scholar 

  9. Lippitt, S. B., Vanderhooft, J. E., Harris, S. L., Sidles, J. A., Harryman, D. T., 2nd., & Matsen, F. A., 3rd. (1993). Glenohumeral stability from concavity-compression: A quantitative analysis. Journal of Shoulder and Elbow Surgery, 2(1), 27–35. https://doi.org/10.1016/S1058-2746(09)80134-1

    Article  CAS  PubMed  Google Scholar 

  10. Pouliart, N., Marmor, S., & Gagey, O. (2006). Simulated capsulolabral lesion in cadavers: Dislocation does not result from a bankart lesion only. Arthroscopy, 22(7), 748–754. https://doi.org/10.1016/j.arthro.2006.04.077

    Article  PubMed  Google Scholar 

  11. Inokuchi, W., Sanderhoff Olsen, B., Søjbjerg, J. O., & Sneppen, O. (1997). The relation between the position of the glenohumeral joint and the intraarticular pressure: An experimental study. Journal of Shoulder and Elbow Surgery, 6(2), 144–149. https://doi.org/10.1016/s1058-2746(97)90035-5

    Article  CAS  PubMed  Google Scholar 

  12. Hurschler, C., Wülker, N., & Mendila, M. (2000). The effect of negative intraarticular pressure and rotator cuff force on glenohumeral translation during simulated active elevation. Clinical biomechanics, 15(5), 306–314. https://doi.org/10.1016/s0268-0033(99)00088-1

    Article  CAS  PubMed  Google Scholar 

  13. Alexander, S., Southgate, D. F., Bull, A. M., & Wallace, A. L. (2013). The role of negative intraarticular pressure and the long head of biceps tendon on passive stability of the glenohumeral joint. Journal of Shoulder and Elbow Surgery, 22(1), 94–101. https://doi.org/10.1016/j.jse.2012.01.007

    Article  PubMed  Google Scholar 

  14. Ludewig, P. M., & Cook, T. M. (2000). Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Physical Therapy, 80(3), 276–291. https://doi.org/10.1093/ptj/80.3.276

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi, K., Sher, J. S., Andersen, W. K., Garretson, R., Uribe, J. W., Hechtman, K., & Neviaser, R. J. (2000). Glenohumeral motion in patients with rotator cuff tears: A comparison of asymptomatic and symptomatic shoulders. Journal of Shoulder and Elbow Surgery, 9(1), 6–11. https://doi.org/10.1016/s1058-2746(00)90002-8

    Article  CAS  PubMed  Google Scholar 

  16. Rathi, S., Taylor, N. F., Soo, B., & Green, R. A. (2018). Glenohumeral joint translation and muscle activity in patients with symptomatic rotator cuff pathology: An ultrasonographic and electromyographic study with age-matched controls. Journal of Science and Medicine in Sport, 21(9), 885–889. https://doi.org/10.1016/j.jsams.2018.02.007

    Article  PubMed  Google Scholar 

  17. Umehara, J., Kusano, K., Nakamura, M., Morishita, K., Nishishita, S., Tanaka, H., Shimizu, I., & Ichihashi, N. (2018). Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue. Journal of Shoulder and Elbow Surgery, 27(7), 1205–1213. https://doi.org/10.1016/j.jse.2018.01.009

    Article  PubMed  Google Scholar 

  18. Kibler, W. B., Chandler, T. J., Shapiro, R., & Conuel, M. (2007). Muscle activation in coupled scapulohumeral motions in the high performance tennis serve. British Journal of Sports Medicine, 41(11), 745–749. https://doi.org/10.1136/bjsm.2007.037333

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borstad, J. D., Szucs, K., & Navalgund, A. (2009). Scapula kinematic alterations following a modified push-up plus task. Human Movement Science, 28(6), 738–751. https://doi.org/10.1016/j.humov.2009.05.002

    Article  PubMed  Google Scholar 

  20. Ohl, X., Hagemeister, N., Zhang, C., Billuart, F., Gagey, O., Bureau, N. J., & Skalli, W. (2015). 3D scapular orientation on healthy and pathologic subjects using stereoradiographs during arm elevation. Journal of Shoulder and Elbow Surgery, 24(11), 1827–1833. https://doi.org/10.1016/j.jse.2015.04.007

    Article  PubMed  Google Scholar 

  21. Ludewig, P. M., & Cook, T. M. (2002). Translations of the humerus in persons with shoulder impingement symptoms. The Journal of Orthopaedic and Sports Physical Therapy, 32(6), 248–259. https://doi.org/10.2519/jospt.2002.32.6.248

    Article  PubMed  Google Scholar 

  22. Keener, I. D., Wei, A. S., Kim, H. M., Steger-May, K., & Yamaguchi, K. (2009). Proximal humeral migration in shoulders with symptomatic and asymptomatic rotator cuff tears. The Journal of Bone and Joint Surgery American, 91(6), 1405–1413. https://doi.org/10.2106/JBJS.H.00854

    Article  Google Scholar 

  23. Royer, P. J., Kane, E. J., Parks, K. E., Morrow, J. C., Moravec, R. R., Christie, D. S., & Teyhen, D. S. (2009). Fluoroscopic assessment of rotator cuff fatigue on glenohumeral arthrokinematics in shoulder impingement syndrome. Journal of Shoulder and Elbow Surgery, 18(6), 968–975. https://doi.org/10.1016/j.jse.2009.03.002

    Article  PubMed  Google Scholar 

  24. Maenhout, A., Dhooge, F., Van Herzeele, M., Palmans, T., & Cools, A. (2015). Acromiohumeral distance and 3-dimensional scapular position change after overhead muscle fatigue. Journal of Athletic Training, 50(3), 281–288. https://doi.org/10.4085/1062-6050-49.3.92

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lawrence, R. L., Braman, J. P., & Ludewig, P. M. (2019). The impact of decreased scapulothoracic upward rotation on subacromial proximities. The Journal of Orthopaedic and Sports Physical Therapy, 49(3), 180–191. https://doi.org/10.2519/jospt.2019.8590

    Article  PubMed  PubMed Central  Google Scholar 

  26. Klich, S., Pietraszewski, B., Zago, M., Galli, M., Lovecchio, N., & Kawczyński, A. (2020). Ultrasonographic and myotonometric evaluation of the shoulder girdle after an isokinetic muscle fatigue protocol. Journal of Sport Rehabilitation, 29(8), 1047–1052. https://doi.org/10.1123/jsr.2019-0117

    Article  PubMed  Google Scholar 

  27. Warner, J. J., Bowen, M. K., Deng, X. H., Hannafin, J. A., Arnoczky, S. P., & Warren, R. F. (1998). Articular contact patterns of the normal glenohumeral joint. Journal of Shoulder and Elbow Surgery, 7(4), 381–388. https://doi.org/10.1016/s1058-2746(98)90027-1

    Article  CAS  PubMed  Google Scholar 

  28. Yu, J., McGarry, M. H., Lee, Y. S., Duong, L. V., & Lee, T. Q. (2005). Biomechanical effects of supraspinatus repair on the glenohumeral joint. Journal of Shoulder and Elbow Surgery, 14(1), 65S-71S. https://doi.org/10.1016/j.jse.2004.09.019

    Article  PubMed  Google Scholar 

  29. Hammond, G., Tibone, J. E., McGarry, M. H., Jun, B. J., & Lee, T. Q. (2012). Biomechanical comparison of anatomic humeral head resurfacing and hemiarthroplasty in functional glenohumeral positions. The Journal of Bone and Joint Surgery, 94(1), 68–76. https://doi.org/10.2106/JBJS.I.00171

    Article  PubMed  Google Scholar 

  30. Mihata, T., Gates, J., McGarry, M. H., Lee, J., Kinoshita, M., & Lee, T. Q. (2009). Effect of rotator cuff muscle imbalance on forceful internal impingement and peel-back of the superior labrum: A cadaveric study. American Journal of Sports Medicine, 37(11), 2222–2227. https://doi.org/10.1177/0363546509337450

    Article  PubMed  Google Scholar 

  31. Boyer, P. J., Massimini, D. F., Gill, T. J., Papannagari, R., Stewart, S. L., Warner, J. P., & Li, G. (2008). In vivo articular cartilage contact at the glenohumeral joint: Preliminary report. Journal of Orthopaedic Science, 13(4), 359–365. https://doi.org/10.1007/s00776-008-1237-3

    Article  PubMed  Google Scholar 

  32. Bey, M. J., Kline, S. K., Zauel, R., Kolowich, P. A., & Lock, T. R. (2009). In vivo measurement of glenohumeral joint contact patterns. EURASIP Journal on Advances in Signal Processing, 2010, 162136. https://doi.org/10.1155/2010/162136

    Article  Google Scholar 

  33. Massimini, D. F., Warner, J. J., & Li, G. (2014). Glenohumeral joint cartilage contact in the healthy adult during scapular plane elevation depression with external humeral rotation. Journal of Biomechanics, 47(12), 3100–3106. https://doi.org/10.1016/j.jbiomech.2014.06.034

    Article  PubMed  Google Scholar 

  34. Yoshida, H., Kobayashi, K., Sakamoto, M., & Tanabe, Y. (2009). Determination of joint contact area using MRI. Nihon Hoshasen Gijutsu Gakkai Zasshi, 65(10), 1407–1414. https://doi.org/10.6009/jjrt.65.1407

    Article  PubMed  Google Scholar 

  35. Yoshida, H., Watanabe, K., Tanabe, Y., Kobayashi, K., & Sakamoto, M. (2006). Analysis of tibio-femoral joint kinematics and contact area using MRI. Journal of the Japanese Society for Experimental Mechanic, 6(1), 31–35. https://doi.org/10.11395/jjsem.6.31

    Article  Google Scholar 

  36. Sakamoto, M., Kasuga, Y., Kazama, K., & Kobayashi, K. (2015). Three-dimensional in vivo analysis of the contact area and motion of the metacarpophalangeal joint of the index finger using MRI. Japanese Journal of Clinical Biomechanics, 36, 7–15.

    Google Scholar 

  37. Shimawaki, S., Koya, D., Nakabayashi, M., & Sugimoto, H. (2020). Measurement of the contact area of the second to fifth metacarpophalangeal and carpometacarpal joints during sphere grasping using magnetic resonance imaging. Journal of Medical and Biological Engineering, 40(1), 128–137. https://doi.org/10.1007/s40846-019-00496-5

    Article  Google Scholar 

  38. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. S., & Lee, T. Q. (2010). Specimen-specific method for quantifying glenohumeral joint kinematics. Annals of Biomedical Engineering, 38(10), 3226–3336. https://doi.org/10.1007/s10439-010-0074-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Warner, J. J., Deng, X. H., Warren, R. F., & Torzilli, P. A. (1992). Static capsuloligamentous restraints to superior-inferior translation of the glenohumeral joint. American Journal of Sports Medicine, 20(6), 675–685. https://doi.org/10.1177/036354659202000608

    Article  CAS  PubMed  Google Scholar 

  41. Urayama, M., Itoi, E., Hatakeyama, Y., Pradhan, R. L., & Sato, K. (2001). Function of the 3 portions of the inferior glenohumeral ligament: A cadaveric study. Journal of Shoulder and Elbow Surgery, 10(6), 207–213. https://doi.org/10.1067/mse.2001.119391

    Article  Google Scholar 

  42. de Witte, P. B., Henseler, J. F., van Zwet, E. W., Nagels, J., Nelissen, R. G., & de Groot, J. H. (2014). Cranial humerus translation, deltoid activation, adductor co-activation and rotator cuff disease - different patterns in rotator cuff tears, subacromial impingement and controls. Clinical biomechanics, 29(1), 26–32. https://doi.org/10.1016/j.clinbiomech.2013.10.014

    Article  PubMed  Google Scholar 

  43. Overbeek, C. L., Kolk, A., Nagels, J., de Witte, P. B., van der Zwaal, P., Visser, C. P. J., Fiocco, M., Nelissen, R. G. H. H., & de Groot, J. H. (2018). Increased co-contraction of arm adductors is associated with a favorable course in subacromial pain syndrome. Journal of Shoulder and Elbow Surgery, 27(11), 1925–1931. https://doi.org/10.1016/j.jse.2018.06.015

    Article  PubMed  Google Scholar 

  44. Hawkes, D. H., Khaiyat, O. A., Howard, A. J., Kemp, G. J., & Frostick, S. P. (2019). Patterns of muscle coordination during dynamic glenohumeral joint elevation: An EMG study. PloS One, 14(2), e0211800. https://doi.org/10.1371/journal.pone.0211800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Graichen, H., Hinterwimmer, S., von Eisenhart-Rothe, R., Vogl, T., Englmeier, K. H., & Eckstein, F. (2005). Effect of abducting and adducting muscle activity on glenohumeral translation, scapular kinematics and subacromial space width in vivo. Journal of Biomechanics, 38(4), 755–760. https://doi.org/10.1016/j.jbiomech.2004.05.020

    Article  CAS  PubMed  Google Scholar 

  46. McMahon, P. J., Debski, R. E., Thompson, W. O., Warner, J. J., Fu, F. H., & Woo, S. L. (1995). Shoulder muscle forces and tendon excursions during glenohumeral abduction in the scapular plane. Journal of Shoulder and Elbow Surgery, 4(3), 199–208. https://doi.org/10.1016/s1058-2746(05)80052-7

    Article  CAS  PubMed  Google Scholar 

  47. Rhoad, R. C., Klimkiewicz, J. J., Williams, G. R., Kesmodel, S. B., Udupa, J. K., Kneeland, J. B., & Iannotti, J. P. (1998). A new in vivo technique for three-dimensional shoulder kinematics analysis. Skeletal Radiology, 27(2), 92–97. https://doi.org/10.1007/s002560050344

    Article  CAS  PubMed  Google Scholar 

  48. Keener, J. D., Steger-May, K., Stobbs, G., & Yamaguchi, K. (2010). Asymptomatic rotator cuff tears: Patient demographics and baseline shoulder function. Journal of Shoulder and Elbow Surgery, 19(8), 1191–1198. https://doi.org/10.1016/j.jse.2010.07.017

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Witte, P. B., van der Zwaal, P., Visch, W., Schut, J., Nagels, J., Nelissen, R. G., & de Groot, J. H. (2012). Arm adductor with arm abduction in rotator cuff tear patients vs. healthy – design of a new measuring instrument. Human Movement Science, 31(2), 461–471. https://doi.org/10.1016/j.humov.2011.08.007

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study.

Corresponding author

Correspondence to Satoshi Shimawaki.

Ethics declarations

Competing Interests

All contributing authors declare no conflict of interest.

Ethical Approval

This study was approved by the Institutional Review Board for Research on Human Subjects of Utsunomiya University (Approval No.: H21-0042).

Consent to Participate

Before performing the experiment, subjects were given thorough explanations of the purpose and details of the study, and each subject provided written consent.

Consent to Publication

Not applicable. No personal data of participants are included in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimawaki, S., Tsuchiya, T., Suzuki, M. et al. MRI Measurements of the Cartilage Contact Pattern, Contact Area, and Contact Centroid of the Glenohumeral Joint During Abduction Under Static Conditions In Vivo. J. Med. Biol. Eng. (2024). https://doi.org/10.1007/s40846-024-00866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-024-00866-8

Keywords

Navigation