Skip to main content
Log in

Exploring electronic coupling effects in amorphous polymers for multi-color persistent room-temperature phosphorescence

调控分子间的电子耦合效应实现多彩超长有机室温 磷光

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Organic persistent room-temperature phosphorescence (RTP) polymers with exceptional processability, flexibility, and reproducibility exhibit great potential in various optoelectronic applications. However, it is still a challenge to achieve full-color RTP. In this study, we present a novel strategy for achieving multi-color phosphorescence in amorphous polymers by controlling the intermolecular electronic coupling among triphenylphosphine salts in a polyvinyl alcohol matrix. Notably, tunable phosphorescence colors ranging from deep blue to red are achieved. Both experimental and theoretical results have demonstrated that the inter-molecular electronic coupling among doping molecules is indeed responsible for wide-range room-temperature phosphorescence color tuning. Furthermore, these polymers have been successfully utilized in multi-color displays, including flexible three-dimensional objects and anti-counter-feiting tags.

摘要

有机超长室温磷光聚合物因其优异的可加工性、灵活性和可重 复性等特点, 在各种光电应用中表现出巨大的应用潜力. 然而, 实现全 彩的室温磷光仍然是一个挑战. 在本文中, 我们通过在聚乙烯醇中掺杂 不同浓度的三苯基膦盐, 成功制备了一系列余晖颜色可调的有机室温 磷光聚合物(从蓝色到红色). 实验和理论计算证明: 室温磷光聚合物颜 色的宽范围调控归因于掺杂体膦盐分子间的电子耦合作用大小. 此外, 这些多彩的磷光聚合物可应用于柔性3D显示和防伪.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhao W, He Z, Tang BZ. Room-temperature phosphorescence from organic aggregates. Nat Rev Mater, 2020, 5: 869–885

    Article  CAS  Google Scholar 

  2. Chen C, Chi Z, Chong KC, et al. Carbazole isomers induce ultralong organic phosphorescence. Nat Mater, 2021, 20: 175–180

    Article  Google Scholar 

  3. An Z, Zheng C, Tao Y, et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat Mater, 2015, 14: 685–690

    Article  CAS  Google Scholar 

  4. Nidhankar AD, Goudappagouda AD, Mohana Kumari DS, et al. Self-assembled helical arrays for the stabilization of the triplet state. Angew Chem Int Ed, 2020, 59: 13079–13085

    Article  CAS  Google Scholar 

  5. Liu S, Lin Y, Yan D. Hydrogen-bond organized 2D metal-organic microsheets: Direct ultralong phosphorescence and color-tunable optical waveguides. Sci Bull, 2022, 67: 2076–2084

    Article  CAS  Google Scholar 

  6. Fang X, Tang Y, Ma YJ, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Sci China Mater, 2023, 66: 664–671

    Article  CAS  Google Scholar 

  7. Liu W, Wang J, Gong Y, et al. Room-temperature phosphorescence invoked through norbornyl-driven intermolecular interaction intensification with anomalous reversible solid-state photochromism. Angew Chem Int Ed, 2020, 59: 20161–20166

    Article  CAS  Google Scholar 

  8. She P, Lu J, Qin Y, et al. Controllable photoactivated organic persistent room-temperature phosphorescence for information encryption and visual temperature detection. Cell Rep Phys Sci, 2021, 2: 100505

    Article  CAS  Google Scholar 

  9. Ye W, Ma H, Shi H, et al. Confining isolated chromophores for highly efficient blue phosphorescence. Nat Mater, 2021, 20: 1539–1544

    Article  CAS  Google Scholar 

  10. She P, Qin Y, Ma Y, et al. Lifetime-tunable organic persistent room-temperature phosphorescent salts for large-area security printing. Sci China Mater, 2021, 64: 1485–1494

    Article  CAS  Google Scholar 

  11. Song J, Ma L, Sun S, et al. Reversible multilevel stimuli-responsiveness and multicolor room temperature phosphorescence emission based on a single component system. Angew Chem Int Ed, 2022, 61: e202206157

    Article  CAS  Google Scholar 

  12. Li Z, Liu X, Sun L, et al. Phosphorus-containing amorphous pure organic room-temperature phosphorescent materials. Eur Polym J, 2020, 141: 110072

    Article  CAS  Google Scholar 

  13. Yan ZA, Lin X, Sun S, et al. Activating room-temperature phosphorescence of organic luminophores via external heavy-atom effect and rigidity of ionic polymer matrix. Angew Chem Int Ed, 2021, 60: 19735–19739

    Article  CAS  Google Scholar 

  14. Zhang Y, Su Y, Wu H, et al. Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films. J Am Chem Soc, 2021, 143: 13675–13685

    Article  CAS  Google Scholar 

  15. Li D, Yang Y, Yang J, et al. Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nat Commun, 2022, 13: 347

    Article  Google Scholar 

  16. Tian R, Xu SM, Xu Q, et al. Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci Adv, 2020, 6: eaaz6107

    Article  CAS  Google Scholar 

  17. Zhang Y, Chen J, Sun Q, et al. In-situ grafting N-arylcarbazoles enables more ultra-long room temperature phosphorescence polymers. Chem Eng J, 2023, 452: 139385

    Article  CAS  Google Scholar 

  18. Gan N, Zou X, Dong M, et al. Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nat Commun, 2022, 13: 3995

    Article  CAS  Google Scholar 

  19. Li D, Yang J, Fang M, et al. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci Adv, 2020, 8: eabl8392

    Article  Google Scholar 

  20. Gmelch M, Thomas H, Fries F, et al. Programmable transparent organic luminescent tags. Sci Adv, 2019, 5: eaau7310

    Article  Google Scholar 

  21. Huang Z, He Z, Ding B, et al. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat Commun, 2022, 13: 7841

    Article  CAS  Google Scholar 

  22. Tang S, Zhao Z, Chen J, et al. Unprecedented and readily tunable photoluminescence from aliphatic quaternary ammonium salts. Angew Chem Int Ed, 2022, 61: e202117368

    Article  CAS  Google Scholar 

  23. Xu W, Yu Y, Ji X, et al. Self-stabilized amorphous organic materials with room-temperature phosphorescence. Angew Chem Int Ed, 2019, 58: 16018–16022

    Article  CAS  Google Scholar 

  24. Zhang K, Peng LY, Liu XX, et al. Aromatic amides: A smart backbone toward isolated ultralong bright blue-phosphorescence in confined polymeric films. Angew Chem Int Ed, 2023, 62: e202300927

    Article  CAS  Google Scholar 

  25. Xu WW, Chen Y, Lu YL, et al. Tunable second-level room-temperature phosphorescence of solid supramolecules between acrylamide-phenylpyridium copolymers and cucurbit[7]uril. Angew Chem Int Ed, 2022, 61: e202115265

    Article  CAS  Google Scholar 

  26. Peng H, Xie G, Cao Y, et al. On-demand modulating afterglow color of water-soluble polymers through phosphorescence FRET for multicolor security printing. Sci Adv, 2022, 8: eabk2925

    Article  CAS  Google Scholar 

  27. Xiong S, Xiong Y, Wang D, et al. Achieving tunable organic afterglow and UV-irradiation-responsive ultralong room-temperature phosphorescence from pyridine-substituted triphenylamine derivatives. Adv Mater, 2023, 35: 2301874

    Article  CAS  Google Scholar 

  28. Jinnai K, Kabe R, Adachi C. Wide-range tuning and enhancement of organic long-persistent luminescence using emitter dopants. Adv Mater, 2018, 30: 1800365

    Article  Google Scholar 

  29. Wang Y, Yang J, Gong Y, et al. Host–guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat, 2020, 1: e1006

    Article  Google Scholar 

  30. Dou X, Zhu T, Wang Z, et al. Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers. Adv Mater, 2020, 32: 2004768

    Article  CAS  Google Scholar 

  31. Gu L, Wu H, Ma H, et al. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nat Commun, 2020, 11: 944

    Article  CAS  Google Scholar 

  32. Su Y, Zhang Y, Wang Z, et al. Excitation-dependent long-life luminescent polymeric systems under ambient conditions. Angew Chem Int Ed, 2020, 59: 9967–9971

    Article  CAS  Google Scholar 

  33. Wang Z, Gao L, Zheng Y, et al. Four-in-one stimulus-responsive long-lived luminescent systems based on pyrene-doped amorphous polymers. Angew Chem Int Ed, 2022, 61: e202203254

    Article  CAS  Google Scholar 

  34. Wang Z, Li A, Zhao Z, et al. Accessing excitation- and time-responsive afterglows from aqueous processable amorphous polymer films through doping and energy transfer. Adv Mater, 2022, 34: 2202182

    Article  CAS  Google Scholar 

  35. Cai S, Yao X, Ma H, et al. Manipulating intermolecular interactions for ultralong organic phosphorescence. Aggregate, 2023, 4: e320

    Article  CAS  Google Scholar 

  36. Pan S, Chen Z, Zheng X, et al. Ultralong room-temperature phosphorescence from supramolecular behavior via intermolecular electronic coupling in pure organic crystals. J Phys Chem Lett, 2018, 9: 3939–3945

    Article  CAS  Google Scholar 

  37. Ma L, Ma X. Recent advances in room-temperature phosphorescent materials by manipulating intermolecular interactions. Sci China Chem, 2023, 66: 304–314

    Article  CAS  Google Scholar 

  38. Yang J, Zhen X, Wang B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat Commun, 2018, 9: 840

    Article  Google Scholar 

  39. Gu L, Shi H, Bian L, et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat Photonics, 2019, 13: 406–411

    Article  CAS  Google Scholar 

  40. Liu X, Liao Q, Yang J, et al. Unveiling one-to-one correspondence between excited triplet states and determinate interactions by temperature-controllable blue-green-yellow afterglow. Angew Chem Int Ed, 2023, 62: e202302792

    Article  CAS  Google Scholar 

  41. Frisch M, Trucks G, Schlegel H, et al. Gaussian 09, Gaussian, Inc., Wallingford, CT 2009

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Funds for Distinguished Young Scientists (61825503) and the National Natural Science Foundation of China (62288102, 62205277 and 62322508).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions She P, Ma Y and Zhao Q conceived the idea for this work and designed the experiments. Duan J and Zhou Y performed the syntheses and measured the photophysical property. Li F performed the theoretical simulation. Qin Y and Wei J contributed to the implementation of the experiments and the measurements. She P wrote the manuscript. Liu S, Ma Y and Zhao Q revised the manuscript and provided some suggestions. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yun Ma  (马云) or Qiang Zhao  (赵强).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Yun Ma obtained his PhD degree from Hong Kong Baptist University in 2015 under the supervision of Prof. Wai Yeung Wong. He is currently a full professor at Nanjing University of Posts and Telecommunications. His research focuses on the development of stimuli-responsive materials for advanced optical applications.

Qiang Zhao received his PhD degree in 2007 from Fudan University. He then became a postdoctoral fellow at Nagoya University, Japan. He joined Nanjing University of Posts & Telecommunications in 2008. He was promoted as a full professor in 2010. His research area is organic optoelectronics, including the design, synthesis and excited-state tuning of organic semiconductors for applications in optoelectronic devices

Electronic supplementary material

40843_2023_2651_MOESM1_ESM.pdf

Supporting Information: Exploring Electronic Coupling Effects in Amorphous Polymers for Multi-Color Persistent Room-Temperature Phosphorescence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, P., Duan, J., Li, F. et al. Exploring electronic coupling effects in amorphous polymers for multi-color persistent room-temperature phosphorescence. Sci. China Mater. 66, 4749–4755 (2023). https://doi.org/10.1007/s40843-023-2651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2651-6

Keywords

Navigation