Skip to main content
Log in

Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

To date, copper-based catalysts are one of the most prominent catalysts that can electrochemically reduce CO2 towards high-value fuels or chemicals, such as ethylene, ethanol, acetic acid. However, the chemically active feature of Cu-based catalysts hinders the understanding of the intrinsic catalytic active sites during the initial and the operative processes of electrochemical CO2 reduction (CO2RR). The identification and engineering of active sites during the dynamic evolution of catalysts are thereby vital to further improve the activity, selectivity, and durability of Cu-based catalysts for high-performance CO2RR. In this regard, four triggers for the dynamic evolution of catalysts were introduced in detail. Afterward, three typical active-site theories during the dynamic reconstruction of catalysts were discussed. In addition, the strategies in catalyst design were summarized according to the latest reports of Cu-based catalysts for CO2RR, including the tuning of electronic structure, controlling of the external potential, and regulation of local catalytic environment. Finally, the conclusions and perspectives were provided to inspire more investigations and studies on the intrinsic active sites during the dynamic evolution of catalysts, which could promote the optimization of the catalyst system to further improve the performance of CO2RR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dattila F, Seemakurthi RR, Zhou Y, López N. Chem Rev, 2022, 122: 11085–11130

    CAS  PubMed  Google Scholar 

  2. Huang Y, Wang Y, Wu Y, Yu Y, Zhang B. Sci China Chem, 2021, 65: 204–206

    Google Scholar 

  3. Hori Y. Electrochemical CO2 Reduction on Metal Electrodes. New York: Springer, 2008. Chapter 3, 89–189

    Google Scholar 

  4. Lu L, Sun X, Ma J, Zhu Q, Wu C, Yang D, Han B. Sci China Chem, 2018, 61: 228–235

    CAS  Google Scholar 

  5. Hu C, Zhang L, Li L, Zhu W, Deng W, Dong H, Zhao ZJ, Gong J. Sci China Chem, 2019, 62: 1030–1036

    CAS  Google Scholar 

  6. Ren X, Liu S, Li H, Ding J, Liu L, Kuang Z, Li L, Yang H, Bai F, Huang Y, Zhang T, Liu B. Sci China Chem, 2020, 63: 1727–1733

    CAS  Google Scholar 

  7. Li QX, Si DH, Lin W, Wang YB, Zhu HJ, Huang YB, Cao R. Sci China Chem, 2022, 65: 1584–1593

    CAS  Google Scholar 

  8. Kuhl KP, Cave ER, Abram DN, Jaramillo TF. Energy Environ Sci, 2012, 5: 7050–7059

    CAS  Google Scholar 

  9. Wen G, Ren B, Zheng Y, Li M, Silva C, Song S, Zhang Z, Dou H, Zhao L, Luo D, Yu A, Chen Z. Adv Energy Mater, 2021, 12: 2103289

    Google Scholar 

  10. Chen J, Wang L. Adv Mater, 2022, 34: 2103900

    CAS  Google Scholar 

  11. He C, Chen S, Long R, Song L, Xiong Y. Sci China Chem, 2020, 63: 1721–1726

    CAS  Google Scholar 

  12. Rossi K, Buonsanti R. Acc Chem Res, 2022, 55: 629–637

    CAS  PubMed  Google Scholar 

  13. Wang J, Tan HY, Zhu Y, Chu H, Chen HM. Angew Chem Int Ed, 2021, 60: 17254–17267

    CAS  Google Scholar 

  14. Tabassum H, Yang X, Zou R, Wu G. Chem Catal, 2022, 2: 1561–1593

    CAS  Google Scholar 

  15. Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Sci China Chem, 2021, 64: 1660–1678

    CAS  Google Scholar 

  16. Popović S, Smiljanić M, Jovanovič P, Vavra J, Buonsanti R, Hodnik N. Angew Chem Int Ed, 2020, 59: 14736–14746

    Google Scholar 

  17. Hori Y, Takahashi I, Koga O, Hoshi N. J Phys Chem B, 2002, 106: 15–17

    CAS  Google Scholar 

  18. Hori Y, Takahashi I, Koga O, Hoshi N. J Mol Catal A-Chem, 2003, 199: 39–47

    CAS  Google Scholar 

  19. Eren B, Zherebetskyy D, Patera LL, Wu CH, Bluhm H, Africh C, Wang LW, Somorjai GA, Salmeron M. Science, 2016, 351: 475–478

    CAS  PubMed  Google Scholar 

  20. Huang J, Hörmann N, Oveisi E, Loiudice A, De Gregorio GL, Andreussi O, Marzari N, Buonsanti R. Nat Commun, 2018, 9: 3117

    PubMed  PubMed Central  Google Scholar 

  21. Mistry H, Varela AS, Bonifacio CS, Zegkinoglou I, Sinev I, Choi YW, Kisslinger K, Stach EA, Yang JC, Strasser P, Cuenya BR. Nat Commun, 2016, 7: 12123

    PubMed  PubMed Central  Google Scholar 

  22. Mariano RG, McKelvey K, White HS, Kanan MW. Science, 2017, 358: 1187–1192

    CAS  PubMed  Google Scholar 

  23. Zhu C, Zhang Z, Zhong L, Hsu CS, Xu X, Li Y, Zhao S, Chen S, Yu J, Chen S, Wu M, Gao P, Li S, Chen HM, Liu K, Zhang L. Chem, 2021, 7: 406–420

    CAS  Google Scholar 

  24. Tamilmani S, Huang W, Raghavan S, Small R. J Electrochem Soc, 2002, 149: G638

    CAS  Google Scholar 

  25. Zhao S, Yang Y, Tang Z. Angew Chem Int Ed, 2022, 61: e202110186

    CAS  Google Scholar 

  26. Zhu C, Zhao S, Shi G, Zhang L. ChemSusChem, 2022, 15: e202200068

    CAS  PubMed  Google Scholar 

  27. Wagner A, Sahm CD, Reisner E. Nat Catal, 2020, 3: 775–786

    CAS  Google Scholar 

  28. Deng B, Huang M, Zhao X, Mou S, Dong F. ACS Catal, 2022, 12: 331–362

    CAS  Google Scholar 

  29. Wei P, Li H, Lin L, Gao D, Zhang X, Gong H, Qing G, Cai R, Wang G, Bao X. Sci China Chem, 2020, 63: 1711–1715

    CAS  Google Scholar 

  30. Luo T, Liu K, Fu J, Chen S, Li H, Hu J, Liu M. J Energy Chem, 2022, 70: 219–223

    CAS  Google Scholar 

  31. Pang Y, Li J, Wang Z, Tan CS, Hsieh PL, Zhuang TT, Liang ZQ, Zou C, Wang X, De Luna P, Edwards JP, Xu Y, Li F, Dinh CT, Zhong M, Lou Y, Wu D, Chen LJ, Sargent EH, Sinton D. Nat Catal, 2019, 2: 251–258

    CAS  Google Scholar 

  32. Liu W, Zhai P, Li A, Wei B, Si K, Wei Y, Wang X, Zhu G, Chen Q, Gu X, Zhang R, Zhou W, Gong Y. Nat Commun, 2022, 13: 1877

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang S, D’Amario L, Dau H. ChemSusChem, 2022, 15: e202102506

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mu S, Lu H, Wu Q, Li L, Zhao R, Long C, Cui C. Nat Commun, 2022, 13: 3694

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang W, Duan J, Liu Y, Zhai T. Adv Mater, 2022, 34: 2110699

    CAS  Google Scholar 

  36. Lai W, Ma Z, Zhang J, Yuan Y, Qiao Y, Huang H. Adv Funct Mater, 2022, 32: 2111193

    CAS  Google Scholar 

  37. Vavra J, Shen TH, Stoian D, Tileli V, Buonsanti R. Angew Chem Int Ed, 2021, 60: 1347–1354

    CAS  Google Scholar 

  38. Chen C, Yan X, Wu Y, Liu S, Sun X, Zhu Q, Feng R, Wu T, Qian Q, Liu H, Zheng L, Zhang J, Han B. Chem Sci, 2021, 12: 5938–5943

    PubMed  PubMed Central  Google Scholar 

  39. Popovic S, Bele M, Hodnik N. ChemElectroChem, 2021, 8: 2634–2639

    CAS  Google Scholar 

  40. Raaijman SJ, Arulmozhi N, Koper MTM. ACS Appl Mater Interfaces, 2021, 13: 48730–48744

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang CJ, Hung SF, Hsu CS, Chen HC, Lin SC, Liao YF, Chen HM. ACS Cent Sci, 2019, 5: 1998–2009

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lum Y, Ager JW. Angew Chem Int Ed, 2018, 57: 551–554

    CAS  Google Scholar 

  43. Chang CJ, Lin SC, Chen HC, Wang J, Zheng KJ, Zhu Y, Chen HM. J Am Chem Soc, 2020, 142: 12119–12132

    CAS  PubMed  Google Scholar 

  44. Zhang W, Huang C, Xiao Q, Yu L, Shuai L, An P, Zhang J, Qiu M, Ren Z, Yu Y. J Am Chem Soc, 2020, 142: 11417–11427

    CAS  PubMed  Google Scholar 

  45. Wang HY, Soldemo M, Degerman D, Lömker P, Schlueter C, Nilsson A, Amann P. Angew Chem Int Ed, 2022, 61: e202111021

    CAS  Google Scholar 

  46. Weatherup RS, Wu CH, Escudero C, Pérez-Dieste V, Salmeron MB. J Phys Chem B, 2018, 122: 737–744

    CAS  PubMed  Google Scholar 

  47. Yang Y, Roh I, Louisia S, Chen C, Jin J, Yu S, Salmeron MB, Wang C, Yang P. J Am Chem Soc, 2022, 144: 8927–8931

    CAS  PubMed  Google Scholar 

  48. Kim YG, Baricuatro JH, Javier A, Gregoire JM, Soriaga MP. Langmuir, 2014, 30: 15053–15056

    CAS  PubMed  Google Scholar 

  49. Kim YG, Javier A, Baricuatro JH, Torelli D, Cummins KD, Tsang CF, Hemminger JC, Soriaga MP. J Electroanal Chem, 2016, 780: 290–295

    CAS  Google Scholar 

  50. Baricuatro JH, Kim YG, Tsang CF, Javier AC, Cummins KD, Hemminger JC. J Electroanal Chem, 2020, 857: 113704

    CAS  Google Scholar 

  51. Park JC, Kim J, Kwon H, Song H. Adv Mater, 2009, 21: 803–807

    CAS  Google Scholar 

  52. Zhao Y, Chang X, Malkani AS, Yang X, Thompson L, Jiao F, Xu B. J Am Chem Soc, 2020, 142: 9735–9743

    CAS  PubMed  Google Scholar 

  53. De Luna P, Quintero-Bermudez R, Dinh CT, Ross MB, Bushuyev OS, Todorović P, Regier T, Kelley SO, Yang P, Sargent EH. Nat Catal, 2018, 1: 103–110

    CAS  Google Scholar 

  54. Simon GH, Kley CS, Roldan Cuenya B. Angew Chem Int Ed, 2021, 60: 2561–2568

    CAS  Google Scholar 

  55. Li F, Thevenon A, Rosas-Hernández A, Wang Z, Li Y, Gabardo CM, Ozden A, Dinh CT, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Nature, 2020, 577: 509–513

    CAS  PubMed  Google Scholar 

  56. Eren B, Zherebetskyy D, Hao Y, Patera LL, Wang LW, Somorjai GA, Salmeron M. Surf Sci, 2016, 651: 210–214

    CAS  Google Scholar 

  57. Baricuatro JH, Kim YG, Korzeniewski CL, Soriaga MP. Electrochem Commun, 2018, 91: 1–4

    CAS  Google Scholar 

  58. Auer A, Andersen M, Wernig EM, Hörmann NG, Buller N, Reuter K, Kunze-Liebhäuser J. Nat Catal, 2020, 3: 797–803

    CAS  Google Scholar 

  59. Kwon S, Kim YG, Baricuatro JH, Goddard III WA. ACS Catal, 2021, 11: 12068–12074

    CAS  Google Scholar 

  60. Goodman ED, Schwalbe JA, Cargnello M. ACS Catal, 2017, 7: 7156–7173

    CAS  Google Scholar 

  61. Osowiecki WT, Nussbaum JJ, Kamat GA, Katsoukis G, Ledendecker M, Frei H, Bell AT, Alivisatos AP. ACS Appl Energy Mater, 2019, 2: 7744–7749

    CAS  Google Scholar 

  62. Fu Y, Xie Q, Wu L, Luo J. Chin J Catal, 2022, 43: 1066–1073

    CAS  Google Scholar 

  63. Zhang G, Zhao ZJ, Cheng D, Li H, Yu J, Wang Q, Gao H, Guo J, Wang H, Ozin GA, Wang T, Gong J. Nat Commun, 2021, 12: 5745

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Yu P, Lei R, Yang F, Wen P, Ma X, Zeng G, Guo J, Toma FM, Qiu Y, Geyer SM, Wang X, Cheng T, Drisdell WS. Angew Chem Int Ed, 2021, 60: 24838–24843

    CAS  Google Scholar 

  65. Iyengar P, Kolb MJ, Pankhurst J, Calle-Vallejo F, Buonsanti R. ACS Catal, 2021, 11: 13330–13336

    CAS  Google Scholar 

  66. Liu B, Yao X, Zhang Z, Li C, Zhang J, Wang P, Zhao J, Guo Y, Sun J, Zhao C. ACS Appl Mater Interfaces, 2021, 13: 39165–39177

    CAS  PubMed  Google Scholar 

  67. Chang CC, Ku MS. J Phys Chem C, 2021, 125: 10919–10925

    CAS  Google Scholar 

  68. Kim JY, Park W, Choi C, Kim G, Cho KM, Lim J, Kim SJ, Al-Saggaf A, Gereige I, Lee H, Jung WB, Jung Y, Jung HT. ACS Catal, 2021, 11: 5658–5665

    CAS  Google Scholar 

  69. Kim JY, Kim G, Won H, Gereige I, Jung WB, Jung HT. Adv Mater, 2022, 34: 2106028

    CAS  Google Scholar 

  70. Wahab OJ, Kang M, Daviddi E, Walker M, Unwin PR. ACS Catal, 2022, 12: 6578–6588

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Song M, Jiao Z, Jing W, Liu Y, Guo L. J Phys Chem Lett, 2022, 13: 4434–4440

    CAS  PubMed  Google Scholar 

  72. Cheng D, Zhao ZJ, Zhang G, Yang P, Li L, Gao H, Liu S, Chang X, Chen S, Wang T, Ozin GA, Liu Z, Gong J. Nat Commun, 2021, 12: 395

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Deng B, Huang M, Li K, Zhao X, Geng Q, Chen S, Xie H, Dong X, Wang H, Dong F. Angew Chem Int Ed, 2022, 61: e202114080

    CAS  Google Scholar 

  74. Möller T, Scholten F, Thanh TN, Sinev I, Timoshenko J, Wang X, Jovanov Z, Gliech M, Roldan Cuenya B, Varela AS, Strasser P. Angew Chem Int Ed, 2020, 59: 17974–17983

    Google Scholar 

  75. Fu W, Liu Z, Wang T, Liang J, Duan S, Xie L, Han J, Li Q. ACS Sustain Chem Eng, 2020, 8: 15223–15229

    CAS  Google Scholar 

  76. Wu ZZ, Zhang XL, Niu ZZ, Gao FY, Yang PP, Chi LP, Shi L, Wei WS, Liu R, Chen Z, Hu S, Zheng X, Gao MR. J Am Chem Soc, 2022, 144: 259–269

    CAS  PubMed  Google Scholar 

  77. Li CW, Kanan MW. J Am Chem Soc, 2012, 134: 7231–7234

    CAS  PubMed  Google Scholar 

  78. Li CW, Ciston J, Kanan MW. Nature, 2014, 508: 504–507

    CAS  PubMed  Google Scholar 

  79. Feng X, Jiang K, Fan S, Kanan MW. ACS Cent Sci, 2016, 2: 169–174

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. J Am Chem Soc, 2015, 137: 9808–9811

    CAS  PubMed  Google Scholar 

  81. Kim J, Choi W, Park JW, Kim C, Kim M, Song H. J Am Chem Soc, 2019, 141: 6986–6994

    CAS  PubMed  Google Scholar 

  82. Jung H, Lee SY, Lee CW, Cho MK, Won DH, Kim C, Oh HS, Min BK, Hwang YJ. J Am Chem Soc, 2019, 141: 4624–4633

    CAS  PubMed  Google Scholar 

  83. Lei Q, Zhu H, Song K, Wei N, Liu L, Zhang D, Yin J, Dong X, Yao K, Wang N, Li X, Davaasuren B, Wang J, Han Y. J Am Chem Soc, 2020, 142: 4213–4222

    CAS  PubMed  Google Scholar 

  84. Li Y, Kim D, Louisia S, Xie C, Kong Q, Yu S, Lin T, Aloni S, Fakra SC, Yang P. Proc Natl Acad Sci USA, 2020, 117: 9194–9201

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cao L, Raciti D, Li C, Livi KJT, Rottmann PF, Hemker KJ, Mueller T, Wang C. ACS Catal, 2017, 7: 8578–8587

    CAS  Google Scholar 

  86. Lei Q, Huang L, Yin J, Davaasuren B, Yuan Y, Dong X, Wu ZP, Wang X, Yao KX, Lu X, Han Y. Nat Commun, 2022, 13: 4857

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Velasco-Vélez JJ, Jones T, Gao D, Carbonio E, Arrigo R, Hsu CJ, Huang YC, Dong CL, Chen JM, Lee JF, Strasser P, Roldan Cuenya B, Schlögl R, Knop-Gericke A, Chuang CH. ACS Sustain Chem Eng, 2019, 7: 1485–1492

    Google Scholar 

  88. Liu G, Lee M, Kwon S, Zeng G, Eichhorn J, Buckley AK, Toste FD, Goddard III WA, Toma FM. Proc Natl Acad Sci USA, 2021, 118: e2012649118

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lyu Z, Zhu S, Xie M, Zhang Y, Chen Z, Chen R, Tian M, Chi M, Shao M, Xia Y. Angew Chem Int Ed, 2021, 60: 1909–1915

    CAS  Google Scholar 

  90. Qi P, Zhao L, Deng Z, Sun H, Li H, Liu Q, Li X, Lian Y, Cheng J, Guo J, Cui Y, Peng Y. J Phys Chem Lett, 2021, 12: 3941–3950

    CAS  PubMed  Google Scholar 

  91. Lu JN, Liu J, Zhang L, Dong LZ, Li SL, Lan YQ. J Mater Chem A, 2021, 9: 23477–23484

    CAS  Google Scholar 

  92. Zhang J, Li Z, Cai R, Zhang T, Yang S, Ma L, Wang Y, Wu Y, Wu J. Energy Environ Mater, 2022, DOI: https://doi.org/10.1002/eem2.12307

  93. Lawrence MJ, Celorrio V, Sargeant E, Huang H, Rodríguez-López J, Zhu Y, Gu M, Russell AE, Rodriguez P. ACS Appl Mater Interfaces, 2022, 14: 2742–2753

    CAS  PubMed  Google Scholar 

  94. Zhang J, Wang Y, Li Z, Xia S, Cai R, Ma L, Zhang T, Ackley J, Yang S, Wu Y, Wu J. Adv Sci, 2022, 9: 2200454

    CAS  Google Scholar 

  95. Huo H, Wang J, Fan Q, Hu Y, Yang J. Adv Energy Mater, 2021, 11:2102447

    CAS  Google Scholar 

  96. Ling P, Liu Y, Wang Z, Li L, Hu J, Zhu J, Yan W, Jiang H, Hou Z, Sun Y, Xie Y. Nano Lett, 2022, 22: 2988–2994

    CAS  PubMed  Google Scholar 

  97. Lee SH, Lin JC, Farmand M, Landers AT, Feaster JT, Avilés Acosta JE, Beeman JW, Ye Y, Yano J, Mehta A, Davis RC, Jaramillo TF, Hahn C, Drisdell WS. J Am Chem Soc, 2021, 143: 588–592

    CAS  PubMed  Google Scholar 

  98. Kibria MG, Dinh CT, Seifitokaldani A, De Luna P, Burdyny T, Quintero-Bermudez R, Ross MB, Bushuyev OS, García de Arquer FP, Yang P, Sinton D, Sargent EH. Adv Mater, 2018, 30: 1804867

    Google Scholar 

  99. Quan W, Lin Y, Luo Y, Huang Y. Adv Sci, 2021, 8: 2101597

    CAS  Google Scholar 

  100. Guo C, Guo Y, Shi Y, Lan X, Wang Y, Yu Y, Zhang B. Angew Chem Int Ed, 2022, 61: e202205909

    CAS  Google Scholar 

  101. Wen CF, Zhou M, Liu PF, Liu Y, Wu X, Mao F, Dai S, Xu B, Wang XL, Jiang Z, Hu P, Yang S, Wang HF, Yang HG. Angew Chem Int Ed, 2022, 61: e202111700

    CAS  Google Scholar 

  102. Wang K, Liu Y, Wang Q, Zhang Y, Yang X, Chen L, Liu M, Qiu X, Li J, Li W. Appl Catal B-Environ, 2022, 316: 121616

    CAS  Google Scholar 

  103. Lu XK, Lu B, Li H, Lim K, Seitz LC. ACS Catal, 2022, 12: 6663–6671

    CAS  Google Scholar 

  104. Peng C, Xu Z, Luo G, Yan S, Zhang J, Li S, Chen Y, Chang LY, Wang Z, Sham T-, Zheng G. Adv Energy Mater, 2022, 12: 2200195

    CAS  Google Scholar 

  105. Zhou X, Shan J, Chen L, Xia BY, Ling T, Duan J, Jiao Y, Zheng Y, Qiao SZ. J Am Chem Soc, 2022, 144: 2079–2084

    CAS  PubMed  Google Scholar 

  106. Zaza L, Rossi K, Buonsanti R. ACS Energy Lett, 2022, 7: 1284–1291

    CAS  Google Scholar 

  107. Choukroun D, Pacquets L, Li C, Hoekx S, Arnouts S, Baert K, Hauffman T, Bals S, Breugelmans T. ACS Nano, 2021, 15: 14858–14872

    CAS  PubMed  Google Scholar 

  108. Ye Y, Qian J, Yang H, Su H, Lee KJ, Etxebarria A, Cheng T, Xiao H, Yano J, Goddard Iii WA, Crumlin EJ. ACS Appl Mater Interfaces, 2020, 12: 25374–25382

    CAS  PubMed  Google Scholar 

  109. Hu F, Yang L, Jiang Y, Duan C, Wang X, Zeng L, Lv X, Duan D, Liu Q, Kong T, Jiang J, Long R, Xiong Y. Angew Chem Int Ed, 2021, 60: 26122–26127

    CAS  Google Scholar 

  110. Cai R, Sun M, Ren J, Ju M, Long X, Huang B, Yang S. Chem Sci, 2021, 12: 15382–15388

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang R, Duan J, Dong P, Wen Q, Wu M, Liu Y, Liu Y, Li H, Zhai T. Angew Chem Int Ed, 2022, 61: e202116706

    CAS  Google Scholar 

  112. Li J, Ozden A, Wan M, Hu Y, Li F, Wang Y, Zamani RR, Ren D, Wang Z, Xu Y, Nam DH, Wicks J, Chen B, Wang X, Luo M, Graetzel M, Che F, Sargent EH, Sinton D. Nat Commun, 2021, 12: 2808

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yuan X, Chen S, Cheng D, Li L, Zhu W, Zhong D, Zhao ZJ, Li J, Wang T, Gong J. Angew Chem Int Ed, 2021, 60: 15344–15347

    CAS  Google Scholar 

  114. Shen C, Wang P, Li L, Huang X, Shao Q. Nano Res, 2021, 15: 528–534

    Google Scholar 

  115. Varandili SB, Stoian D, Vavra J, Rossi K, Pankhurst JR, Guntern YT, López N, Buonsanti R. Chem Sci, 2021, 12: 14484–14493

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang J, Pham THM, Ko Y, Li M, Yang S, Koolen CD, Zhong L, Luo W, Züttel A. Cell Rep Phys Sci, 2022, 3: 100949

    CAS  Google Scholar 

  117. Velasco-Velez JJ, Mom RV, Sandoval-Diaz LE, Falling LJ, Chuang CH, Gao D, Jones TE, Zhu Q, Arrigo R, Roldan Cuenya B, Knop-Gericke A, Lunkenbein T, Schlögl R. ACS Energy Lett, 2020, 5: 2106–2111

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rong W, Zou H, Zang W, Xi S, Wei S, Long B, Hu J, Ji Y, Duan L. Angew Chem Int Ed, 2021, 60: 466–472

    CAS  Google Scholar 

  119. Guan A, Yang C, Wang Q, Qian L, Cao J, Zhang L, Wu L, Zheng G. ACS Sustain Chem Eng, 2021, 9: 13536–13544

    CAS  Google Scholar 

  120. Mei B, Liu C, Li J, Gu S, Du X, Lu S, Song F, Xu W, Jiang Z. J Energy Chem, 2021, 64: 1–7

    Google Scholar 

  121. Verga LG, Mendes PCD, Ocampo-Restrepo VK, Da Silva JLF. Catal Sci Technol, 2021, 12: 869–879

    Google Scholar 

  122. Yang B, Chen L, Xue S, Sun H, Feng K, Chen Y, Zhang X, Xiao L, Qin Y, Zhong J, Deng Z, Jiao Y, Peng Y. Nat Commun, 2022, 13: 5122

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu HL, Huang JR, Zhang XW, Wang C, Huang NY, Liao PQ, Chen XM. ACS Catal, 2021, 11: 11786–11792

    CAS  Google Scholar 

  124. Zhang W, Huang C, Zhu J, Zhou Q, Yu R, Wang Y, An P, Zhang J, Qiu M, Zhou L, Mai L, Yi Z, Yu Y. Angew Chem Int Ed, 2022, 61: e202112116

    CAS  Google Scholar 

  125. Yang J, Qi H, Li A, Liu X, Yang X, Zhang S, Zhao Q, Jiang Q, Su Y, Zhang L, Li JF, Tian ZQ, Liu W, Wang A, Zhang T. J Am Chem Soc, 2022, 144: 12062–12071

    CAS  PubMed  Google Scholar 

  126. Jiang K, Sandberg RB, Akey AJ, Liu X, Bell DC, Nørskov JK, Chan K, Wang H. Nat Catal, 2018, 1: 111–119

    CAS  Google Scholar 

  127. An H, Wu L, Mandemaker LDB, Yang S, de Ruiter J, Wijten JHJ, Janssens JCL, Hartman T, van der Stam W, Weckhuysen BM. Angew Chem Int Ed, 2021, 60: 16576–16584

    CAS  Google Scholar 

  128. Ma Z, Tsounis C, Toe CY, Kumar PV, Subhash B, Xi S, Yang HY, Zhou S, Lin Z, Wu KH, Wong RJ, Thomsen L, Bedford NM, Lu X, Ng YH, Han Z, Amal R. ACS Catal, 2022, 12: 4792–4805

    CAS  Google Scholar 

  129. Tsang CF, Javier AC, Kim YG, Baricuatro JH, Cummins KD, Kim J, Jerkiewicz G, Hemminger JC, Soriaga MP. J Electrochem Soc, 2018, 165: J3350–J3354

    CAS  Google Scholar 

  130. Arán-Ais RM, Scholten F, Kunze S, Rizo R, Roldan Cuenya B. Nat Energy, 2020, 5: 317–325

    Google Scholar 

  131. Timoshenko J, Bergmann A, Rettenmaier C, Herzog A, Arán-Ais RM, Jeon HS, Haase FT, Hejral U, Grosse P, Kühl S, Davis EM, Tian J, Magnussen O, Roldan Cuenya B. Nat Catal, 2022, 5: 259–267

    CAS  Google Scholar 

  132. Chou TC, Chang CC, Yu HL, Yu WY, Dong CL, Velasco-Vélez JJ, Chuang CH, Chen LC, Lee JF, Chen JM, Wu HL. J Am Chem Soc, 2020, 142: 2857–2867

    CAS  PubMed  Google Scholar 

  133. Zhang J, Liu Z, Guo H, Lin H, Wang H, Liang X, Hu H, Xia Q, Zou X, Huang X. ACS Appl Mater Interfaces, 2022, 14: 19388–19396

    CAS  PubMed  Google Scholar 

  134. Han L, Tian B, Gao X, Zhong Y, Wang S, Song S, Wang Z, Zhang Y, Kuang Y, Sun X. SmartMat, 2022, 3: 142–150

    CAS  Google Scholar 

  135. Jeon HS, Timoshenko J, Rettenmaier C, Herzog A, Yoon A, Chee SW, Oener S, Hejral U, Haase FT, Roldan Cuenya B. J Am Chem Soc, 2021, 143: 7578–7587

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Xu Y, Miao RK, Edwards JP, Liu S, O’Brien CP, Gabardo CM, Fan M, Huang JE, Robb A, Sargent EH, Sinton D. Joule, 2022, 6: 1333–1343

    CAS  Google Scholar 

  137. Tan YC, Quek WK, Kim B, Sugiarto S, Oh J, Kai D. ACS Energy Lett, 2022, 7: 2012–2023

    CAS  Google Scholar 

  138. Waegele MM, Gunathunge CM, Li J, Li X. J Chem Phys, 2019, 151: 160902

    PubMed  Google Scholar 

  139. Gunathunge CM, Ovalle VJ, Waegele MM. Phys Chem Chem Phys, 2017, 19: 30166–30172

    CAS  PubMed  Google Scholar 

  140. Sartin MM, Yu Z, Chen W, He F, Sun Z, Chen YX, Huang W. J Phys Chem C, 2018, 122: 26489–26498

    CAS  Google Scholar 

  141. Masana JJ, Peng B, Shuai Z, Qiu M, Yu Y. J Mater Chem A, 2021, 10: 1086–1104

    Google Scholar 

  142. Arán-Ais RM, Rizo R, Grosse P, Algara-Siller G, Dembélé K, Plodinec M, Lunkenbein T, Chee SW, Cuenya BR. Nat Commun, 2020, 11: 3489

    PubMed  PubMed Central  Google Scholar 

  143. Kim C, Cho KM, Park K, Kim JY, Yun GT, Toma FM, Gereige I, Jung HT. Adv Funct Mater, 2021, 31: 2102142

    CAS  Google Scholar 

  144. Wang W, Ma Z, Fei X, Wang X, Yang Z, Wang Y, Zhang J, Ning H, Tsubaki N, Wu M. Chem Eng J, 2022, 436: 135029

    CAS  Google Scholar 

  145. Han J, Long C, Zhang J, Hou K, Yuan Y, Wang D, Zhang X, Qiu X, Zhu Y, Zhang Y, Yang Z, Yan S, Tang Z. Chem Sci, 2020, 11: 10698–10704

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu P, Liu H, Zhang S, Wang J, Wang C. Electrochim Acta, 2020, 354: 136753

    CAS  Google Scholar 

  147. Yoon A, Poon J, Grosse P, Chee SW, Cuenya BR. J Mater Chem A, 2022, 10: 14041–14050

    CAS  Google Scholar 

  148. Han Z, Han D, Chen Z, Gao J, Jiang G, Wang X, Lyu S, Guo Y, Geng C, Yin L, Weng Z, Yang QH. Nat Commun, 2022, 13: 3158

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Krzywda PM, Paradelo Rodríguez A, Benes NE, Mei BT, Mul G. Appl Catal B-Environ, 2022, 316: 121512

    CAS  Google Scholar 

  150. Vasilyev DV, Dyson PJ. ACS Catal, 2021, 11: 1392–1405

    CAS  Google Scholar 

  151. Sun H, Chen L, Xiong L, Feng K, Chen Y, Zhang X, Yuan X, Yang B, Deng Z, Liu Y, Rümmeli MH, Zhong J, Jiao Y, Peng Y. Nat Commun, 2021, 12: 6823

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Han X, Thoi VS. ACS Appl Mater Interfaces, 2020, 12: 45929–45935

    CAS  PubMed  Google Scholar 

  153. Phan TH, Banjac K, Cometto FP, Dattila F, García-Muelas R, Raaijman SJ, Ye C, Koper MTM, López N, Lingenfelder M. Nano Lett, 2021, 21: 2059–2065

    CAS  PubMed  Google Scholar 

  154. Kim JY, Hong D, Lee JC, Kim HG, Lee S, Shin S, Kim B, Lee H, Kim M, Oh J, Lee GD, Nam DH, Joo YC. Nat Commun, 2021, 12: 3765

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Li Y, Cui F, Ross MB, Kim D, Sun Y, Yang P. Nano Lett, 2017, 17: 1312–1317

    CAS  PubMed  Google Scholar 

  156. Ni W, Yixiang Z, Yao Y, Wang X, Zhao R, Yang Z, Li X, Yan YM. ACS Appl Mater Interfaces, 2022, 14: 13261–13270

    CAS  PubMed  Google Scholar 

  157. Pan Y, Li H, Xiong J, Yu Y, Du H, Li S, Wu Z, Li S, Lai J, Wang L. Appl Catal B-Environ, 2022, 306: 121111

    CAS  Google Scholar 

  158. Iijima G, Yamaguchi H, Inomata T, Yoto H, Ito M, Masuda H. ACS Catal, 2020, 10: 15238–15249

    CAS  Google Scholar 

  159. Liu J, Cheng L, Wang Y, Chen R, Xiao C, Zhou X, Zhu Y, Li Y, Li C. J Mater Chem A, 2022, 10: 8459–8465

    CAS  Google Scholar 

  160. Fan Q, Zhang X, Ge X, Bai L, He D, Qu Y, Kong C, Bi J, Ding D, Cao Y, Duan X, Wang J, Yang J, Wu Y. Adv Energy Mater, 2021, 11: 2101424

    CAS  Google Scholar 

  161. Oh Y, Park J, Kim Y, Shim M, Kim TS, Park JY, Byon HR. J Mater Chem A, 2021, 9: 11210–11218

    CAS  Google Scholar 

  162. Chen R, Cheng L, Liu J, Wang Y, Ge W, Xiao C, Jiang H, Li Y, Li C. Small, 2022, 18: 2200720

    CAS  Google Scholar 

  163. Zhuo LL, Chen P, Zheng K, Zhang XW, Wu JX, Lin DY, Liu SY, Wang ZS, Liu JY, Zhou DD, Zhang JP. Angew Chem Int Ed, 2022, 61: e202204967

    CAS  Google Scholar 

  164. Li X, Liu Q, Wang J, Meng D, Shu Y, Lv X, Zhao B, Yang H, Cheng T, Gao Q, Li L, Wu HB. Chem, 2022, 8: 2148–2162

    CAS  Google Scholar 

  165. Zhao Y, Zu X, Chen R, Li X, Jiang Y, Wang Z, Wang S, Wu Y, Sun Y, Xie Y. J Am Chem Soc, 2022, 144: 10446–10454

    CAS  PubMed  Google Scholar 

  166. Jiao X, Hu Z, Li L, Wu Y, Zheng K, Sun Y, Xie Y. Sci China Chem, 2022, 65: 428–440

    CAS  Google Scholar 

  167. Herzog A, Bergmann A, Jeon HS, Timoshenko J, Kühl S, Rettenmaier C, Lopez Luna M, Haase FT, Roldan Cuenya B. Angew Chem Int Ed, 2021, 60: 7426–7435

    CAS  Google Scholar 

  168. Bastidas DM, La Iglesia VM. Corrosion Eng Sci Tech, 2007, 42: 272–280

    CAS  Google Scholar 

  169. Asiri AM, Gao J, Khan SB, Alamry KA, Marwani HM, Khan MSJ, Adeosun WA, Zakeeruddin SM, Ren D, Grätzel M. J Phys Chem Lett, 2022, 13: 345–351

    CAS  PubMed  Google Scholar 

  170. Louisia S, Kim D, Li Y, Gao M, Yu S, Yang P. ChemRxiv, 2021, DOI:https://doi.org/10.33774/chemrxiv-2021-x46f8

  171. Gauthier JA, Stenlid JH, Abild-Pedersen F, Head-Gordon M, Bell AT. ACS Energy Lett, 2021, 6: 3252–3260

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Pioneer” and “Leading Goose” R&D Programs of Zhejiang (2022C03146), National Natural Science Foundation of China (22225606 and 22176029) and Central Government Guided Local Science and Technology Development Fund (2021ZY1022)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bangwei Deng or Fan Dong.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Zhao, X., Li, Y. et al. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci. China Chem. 66, 78–95 (2023). https://doi.org/10.1007/s11426-022-1412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1412-6

Navigation