Skip to main content
Log in

High-resolution light-emitting devices for display applications

面向显示应用的高分辨率发光器件

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

As carriers of visual information, displays play an indispensable role in our daily life. In recent years, high-resolution (HR) self-emissive displays have been rapidly developed because of the expanding market demand for micro-display products; consequently, research on the improvement of display resolution, material and device structure optimization, the design and development of drive circuits, and various applications of HR display technology has significantly increased. However, there is no comprehensive review of HR light-emitting devices. This review focuses on HR light-emitting technologies. The main contents of the review are as follows: (1) methods for fabricating HR light-emitting devices; (2) processes for fabricating self-emissive displays and other potential fine patterning techniques for the same purpose; (3) the advantages and limitations of these processes; (4) the challenges associated with HR displays. This review can serve as a valuable reference for the development of the mi-crodisplay industry and for studies on microdisplays.

摘要

显示器作为视觉信息的载体, 在我们的日常生活中发挥着不可 或缺的作用. 近年来, 随着微显示产品的市场需求不断扩大, 与高分辨 率自发光显示器密切相关的科研成果数量呈现快速增长趋势, 国内外 各大研究机构对显示分辨率的进一步提高、驱动模块的设计与开发、 材料及器件结构的优化和微型显示器的应用研究显著增加. 然而, 尚无 综述对这三种显示技术相关的大量工作进行较为全面的梳理和总结 本综述的主要内容如下: (1)高分辨率显示器件技术路线的工艺划分; (2)各高分辨率自发光显示工艺的具体细节, 以及其他有潜力应用于高 分辨发光显示中的精细图案化技术; (3)各方案的优势和局限性讨论; (4)高分辨显示现存问题与挑战的总结. 本综述有望为微型显示的产业 界和学术界带来有价值的参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Huang Y, Hsiang EL, Deng MY, et al. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light Sci Appl, 2020, 9: 105

    Article  CAS  Google Scholar 

  2. Li JJ, Nie XM, Zhen W, et al. New developments and comparisons in display technology. Chin J Liq Cryst Dis, 2018, 33: 74–84

    Google Scholar 

  3. Bang SY, Suh YH, Fan XB, et al. Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horiz, 2021, 6: 68–77

    Article  CAS  Google Scholar 

  4. Hsiang EL, Yang Z, Yang Q, et al. Prospects and challenges of mini-LED, OLED, and micro-LED displays. J Soc Info Display, 2021, 29: 446–465

    Article  Google Scholar 

  5. Huang Y, Tan G, Gou F, et al. Prospects and challenges of mini-LED and micro-LED displays. J Soc Inf Display, 2019, 27: 387–401

    Article  Google Scholar 

  6. Li YL, Liu YT, Lee JH, et al. MicroLED display: The next-generation display technology. In: Lee JH, Wang QH, Yooh TH (eds.). Proceedings of SPIE. Advances in Display Technologies X. San Francisco: SPIE, 2020

    Google Scholar 

  7. Paranjpe A, Montgomery J, Lee SM, et al. Micro-LED displays: Key manufacturing challenges and solutions. SID Symposium Digest Technical Papers, 2018, 49: 597–600

    Article  Google Scholar 

  8. Jang HJ, Lee JY, Kim J, et al. Progress of display performances: AR, VR, QLED, and OLED. J Inf Display, 2020, 21: 1–9

    Article  CAS  Google Scholar 

  9. Manders JR, Qian L, Titov A, et al. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Jnl Soc Info Display, 2015, 23: 523–528

    Article  CAS  Google Scholar 

  10. Woodgate GJ, Harrold J. Micro-optical systems for micro-LED displays. SID Symposium Digest Technical Papers, 2018, 49: 1559–1562

    Article  CAS  Google Scholar 

  11. Kang C, Lee H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. J Inf Display, 2022, 23: 19–32

    Article  Google Scholar 

  12. Keum NH, Hong SK, Chai CC, et al. An AMOLED pixel circuit for high image quality of 1000 PPI mobile displays in AR and VR applications. Jnl Soc Info Display, 2018, 26: 71–78

    Article  Google Scholar 

  13. Vieri C, Lee G, Balram N, et al. An 18 megapixel 4.3″ 1443 PPI 120 Hz OLED display for wide field of view high acuity head mounted displays. Jnl Soc Info Display, 2018, 26: 314–324

    Article  CAS  Google Scholar 

  14. James Singh K, Huang YM, Ahmed T, et al. Micro-LED as a promising candidate for high-speed visible light communication. Appl Sci, 2020, 10: 7384

    Article  Google Scholar 

  15. Huang Y, Guo Z, Wang X, et al. GaN-based high-response frequency and high-optical power matrix micro-LED for visible light communication. IEEE Electron Device Lett, 2020, 41: 1536–1539

    Article  CAS  Google Scholar 

  16. Carreira JFC, Xie E, Bian R, et al. Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glass. Opt Express, 2020, 28: 12149

    Article  CAS  Google Scholar 

  17. Wei Z, Zhang S, Mao S, et al. Full-duplex high-speed indoor optical wireless communication system based on a micro-LED and VCSEL array. Opt Express, 2021, 29: 3891

    Article  CAS  Google Scholar 

  18. Arvanitakis GN, Bian R, McKendry JJD, et al. Gb/s underwater wireless optical communications using series-connected GaN micro-LED arrays. IEEE Photonics J, 2020, 12: 1–10

    Article  Google Scholar 

  19. Xie E, He X, Islim MS, et al. High-speed visible light communication based on a III-nitride series-biased micro-LED array. J Lightwave Technol, 2019, 37: 1180–1186

    Article  CAS  Google Scholar 

  20. Griffiths AD, Herrnsdorf J, Strain MJ, et al. Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera. Opt Express, 2019, 27: 15585

    Article  CAS  Google Scholar 

  21. Mei S, Liu X, Zhang W, et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl Mater Interfaces, 2018, 10: 5641–5648

    Article  CAS  Google Scholar 

  22. Tian P, Wu Z, Liu X, et al. Large-signal modulation characteristics of a GaN-based micro-LED for Gbps visible-light communication. Appl Phys Express, 2018, 11: 044101

    Article  Google Scholar 

  23. Liu X, Lin R, Chen H, et al. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays. ACS Photonics, 2019, 6: 3186–3195

    Article  CAS  Google Scholar 

  24. Mao D, Li N, Xiong Z, et al. Single-cell optogenetic control of calcium signaling with a high-density micro-LED array. iScience, 2019, 21: 403–412

    Article  CAS  Google Scholar 

  25. McAlinden N, Massoubre D, Richardson E, et al. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt Lett, 2013, 38: 992

    Article  CAS  Google Scholar 

  26. McGovern B, Palmini RB, Grossman N, et al. A new individually addressable micro-LED array for photogenetic neural stimulation. IEEE Trans Biomed Circuits Syst, 2010, 4: 469–476

    Article  CAS  Google Scholar 

  27. Poher V, Grossman N, Kennedy GT, et al. Micro-LED arrays: A tool for two-dimensional neuron stimulation. J Phys D-Appl Phys, 2008, 41: 094014

    Article  Google Scholar 

  28. Goßler C, Bierbrauer C, Moser R, et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J Phys D-Appl Phys, 2014, 47: 205401

    Article  Google Scholar 

  29. Keppeler D, Schwaerzle M, Harczos T, et al. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Sci Transl Med, 2020, 12: eabb8086

    Article  CAS  Google Scholar 

  30. Christen JB, Kullman D, Muthuswamy J, et al. Optogenetic neuro-stimulation of auricular vagus using flexible OLED display technology to treat chronic inflammatory disease and mental health disorders. Electron lett, 2016, 52: 900–902

    Article  Google Scholar 

  31. Steude A, Witts EC, Miles GB, et al. Arrays of microscopic organic LEDs for high-resolution optogenetics. Sci Adv, 2016, 2: e1600061

    Article  Google Scholar 

  32. Werner CF, Wagner T, Miyamoto K, et al. High speed and high resolution chemical imaging based on a new type of OLED-LAPS setup. Procedia Eng, 2011, 25: 346–349

    Article  CAS  Google Scholar 

  33. Held MP, Kloppenburg G, Lachmayer R. Micro pixel LEDs: Design challenge and implementation for high-resolution headlamps. In: Proceedings of the Conference on Light-Emitting Devices, Materials, and Applications, San Francisco, CA: SPEI, 2019

    Google Scholar 

  34. Carreira JFC, Xie E, Bian R, et al. On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication. Opt Express, 2019, 27: A1517

    Article  CAS  Google Scholar 

  35. Lee VW, Twu N, Kymissis I. Micro-LED technologies and applications. Inf Display, 2016, 32: 16–23

    Article  Google Scholar 

  36. Zhang L, Ou F, Chong WC, et al. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. Jnl Soc Info Display, 2018, 26: 137–145

    Article  CAS  Google Scholar 

  37. Zuckerman M. Innovative display technologies—Why a flat panel when you can have a CRT? IEEE Comput Grap Appl, 1984, 4: 9–15

    Article  Google Scholar 

  38. Jia H. Who will win the future of display technologies? Natl Sci Rev, 2018, 5: 427–431

    Article  Google Scholar 

  39. Li JJ, Nie XM, Li GS, et al. Comparison and research progress of flat panel display technology. Chin Opt, 2018, 11: 695–710

    Article  Google Scholar 

  40. Wu T, Sher CW, Lin Y, et al. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl Sci, 2018, 8: 1557

    Article  Google Scholar 

  41. Kawanishi H, Onuma H, Maegawa M, et al. High-resolution and high-brightness full-colour “silicon display” for augmented and mixed reality. J Soc Inf Display, 2021, 29: 57–67

    Article  CAS  Google Scholar 

  42. Ou F, Chong WC, Xu Q, et al. Monochromatic active matrix micro-LED micro-displays with >5,000 dpi pixel density fabricated using monolithic hybrid integration process. SID Symposium Digest Technical Papers, 2018, 49: 1677–1680

    Article  CAS  Google Scholar 

  43. Katsui S, Kobayashi H, Nakagawa T, et al. A 5291-PPI organic light-emitting diode display using field-effect transistors including a c-axis aligned crystalline oxide semiconductor. J Soc Inf Display, 2019, 27: 497–506

    Article  CAS  Google Scholar 

  44. Jiang C, Mu L, Zou J, et al. Full-color quantum dots active matrix display fabricated by ink-jet printing. Sci China Chem, 2017, 60: 1349–1355

    Article  CAS  Google Scholar 

  45. Wang SW, Hong KB, Tsai YL, et al. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography. Sci Rep, 2017, 7: 42962

    Article  Google Scholar 

  46. Li J, Xu L, Tang CW, et al. High-resolution organic light-emitting diodes patterned via contact printing. ACS Appl Mater Interfaces, 2016, 8: 16809–16815

    Article  CAS  Google Scholar 

  47. Meng T, Zheng Y, Zhao D, et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat Photon, 2022, 16: 297–303

    Article  CAS  Google Scholar 

  48. Zhang K, Takahashi T, Ohori D, et al. High-quality nanodisk of InGaN/GaN MQWs fabricated by neutral-beam-etching and GaN re-growth: Towards directional micro-LED in top-down structure. Semicond Sci Technol, 2020, 35: 075001

    Article  CAS  Google Scholar 

  49. Geum DM, Kim SK, Kang CM, et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale, 2019, 11: 23139–23148

    Article  CAS  Google Scholar 

  50. Xu F, Tan Y, Xie Z, et al. Implantation energy- and size-dependent light output of enhanced-efficiency micro-LED arrays fabricated by ion implantation. Opt Express, 2021, 29: 7757

    Article  Google Scholar 

  51. Liu X, Wu Y, Malhotra Y, et al. Submicron full-color LED pixels for microdisplays and micro-LED main displays. J Soc Inf Display, 2020, 28: 410–417

    Article  CAS  Google Scholar 

  52. Malinowski PE, Ke TH, Nakamura A, et al. High resolution photolithography for direct view active matrix organic light-emitting diode augmented reality displays. Jnl Soc Info Display, 2018, 26: 128–136

    Article  CAS  Google Scholar 

  53. Gensler M, Boeffel C, Kröpke S, et al. High-resolution printing for future processing of RGB OLED displays. SID Symposium Digest Technical Papers, 2018, 49: 1117–1119

    Article  CAS  Google Scholar 

  54. Jang W, Lee M, Kweon H, et al. Tetrabranched photo-crosslinker enables micrometer-scale patterning of light-emitting super yellow for high-resolution OLEDs. ACS Photonics, 2021, 8: 2519–2528

    Article  CAS  Google Scholar 

  55. Yokoyama K, Hirasa S, Miyairi N, et al. Ultra-high-resolution 1058-PPI OLED displays with 2.78-in size using CAAC-IGZO FETs with tandem OLED device and single OLED device. Jnl Soc Info Display, 2016, 24: 159–167

    Article  CAS  Google Scholar 

  56. Lee SH, Kim H, Park HL, et al. Solution-processed organic light-emitting diode in high-resolution line patterns by scalable wetting modification. Org Electron, 2019, 73: 332–336

    Article  CAS  Google Scholar 

  57. Liu SF, Hou ZW, Lin L, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 2022, 377: 1112–1116

    Article  CAS  Google Scholar 

  58. Rajeeva BB, Lin L, Perillo EP, et al. High-resolution bubble printing of quantum dots. ACS Appl Mater Interfaces, 2017, 9: 16725–16733

    Article  Google Scholar 

  59. Hahm D, Lim J, Kim H, et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nat Nanotechnol, 2022, 17: 952–958

    Article  CAS  Google Scholar 

  60. Xie W, Gomes R, Aubert T, et al. Nanoscale and single-dot patterning of colloidal quantum dots. Nano Lett, 2015, 15: 7481–7487

    Article  CAS  Google Scholar 

  61. Sung SH, Yoon H, Lim J, et al. Reusable stamps for printing sub-100 nm patterns of functional nanoparticles. Small, 2012, 8: 826–831

    Article  CAS  Google Scholar 

  62. Park JS, Kyhm J, Kim HH, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Lett, 2016, 16: 6946–6953

    Article  CAS  Google Scholar 

  63. Kim BH, Onses MS, Lim JB, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett, 2015, 15: 969–973

    Article  CAS  Google Scholar 

  64. Tamborra M, Striccoli M, Curri M, et al. Nanocrystal-based luminescent composites for nanoimprinting lithography. Small, 2007, 3: 822–828

    Article  CAS  Google Scholar 

  65. Li X, Hu B, Du Z, et al. Asymmetric wettability interfaces induced a large-area quantum dot microstructure toward high-resolution quantum dot light-emitting diodes. ACS Appl Mater Interfaces, 2019, 11: 28520–28526

    Article  CAS  Google Scholar 

  66. Zhao J, Chen L, Li D, et al. Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nat Commun, 2021, 12: 4603

    Article  CAS  Google Scholar 

  67. Sun W, Li F, Tao J, et al. Micropore filling fabrication of high resolution patterned PQDs with a pixel size less than 5 µm. Nanoscale, 2022, 14: 5994–5998

    Article  CAS  Google Scholar 

  68. Min F, Zhou P, Huang Z, et al. A bubble-assisted approach for patterning nanoscale molecular aggregates. Angew Chem Int Ed, 2021, 60: 16547–16553

    Article  CAS  Google Scholar 

  69. Ishihara K, Fujita M, Matsubara I, et al. Demonstration of organic light-emitting diodes with photonic crystal on glass substrate fabricated by nanoimprint lithography. In: 2005 IEEE LEOS Annual Meeting Conference Proceedings. Sydney: IEEE, 2005

    Google Scholar 

  70. Templier F. GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems. Jnl Soc Info Display, 2016, 24: 669–675

    Article  CAS  Google Scholar 

  71. Tull BR, Twu N, Hsu YJ, et al. Micro-LED microdisplays by integration of III–V LEDs with silicon thin film transistors. SID Symposium Digest Technical Papers, 2017, 48: 246–248

    Article  CAS  Google Scholar 

  72. Chaji R, Fathi E, Zamani A. Low-cost micro-LED displays for all applications. SID Symposium Digest Technical Papers, 2017, 48: 264–267

    Article  Google Scholar 

  73. Tsai YL, Huang YM, Yang SM, et al. High performance ultraviolet micro-LED arrays for fine-pitch micro displays. In: 2019 IEEE Photonics Conference. San Antonio, TX: IEEE, 2019

    Google Scholar 

  74. Han S, Xu C, Li H, et al. AlGaInP-based micro-LED array with enhanced optoelectrical properties. Optical Mater, 2021, 114: 110860

    Article  CAS  Google Scholar 

  75. Guo W, Tai J, Liu J, et al. Process optimization of passive matrix GaN-based micro-LED arrays for display applications. J Elec Materi, 2019, 48: 5195–5201

    Article  CAS  Google Scholar 

  76. Kang CM, Kong DJ, Shim JP, et al. Fabrication of a vertically-stacked passive-matrix micro-LED array structure for a dual color display. Opt Express, 2017, 25: 2489

    Article  Google Scholar 

  77. Choi HW, Jeon CW, Dawson MD, et al. Efficient GaN-based micro-LED arrays. MRS Proc, 2002, 743: L6.28

    Article  Google Scholar 

  78. Grossman N, Poher V, Grubb MS, et al. Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng, 2010, 7: 016004

    Article  Google Scholar 

  79. Chen CJ, Chen HC, Liao JH, et al. Fabrication and characterization of active-matrix 960 × 540 blue GaN-based micro-LED display. IEEE J Quantum Electron, 2019, 55: 1–6

    Article  Google Scholar 

  80. Asad M, Li Q, Sachdev M, et al. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy, 2020, 73: 104724

    Article  CAS  Google Scholar 

  81. Zhang LG, Chen D, Yang F, et al. Research on SU-8 resist photolithograph. Opt Precision Eng, 2002, 10: 266–270

    Google Scholar 

  82. Bratton D, Yang D, Dai J, et al. Recent progress in high resolution lithography. Polym Adv Technol, 2006, 17: 94–103

    Article  CAS  Google Scholar 

  83. Chkhalo NI, Salashchenko NN. Projection XEUV-nanolithography. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2009, 603: 147–149

    Article  CAS  Google Scholar 

  84. Seisyan RP. Nanolithography in microelectronics: A review. Tech Phys, 2011, 56: 1061–1073

    Article  CAS  Google Scholar 

  85. Ikumapayi OM, Akinlabi ET, Adeoye AOM, et al. Microfabrication and nanotechnology in manufacturing system—An overview. Mater Today-Proc, 2021, 44: 1154–1162

    Article  Google Scholar 

  86. Gong Z, Zhang HX, Gu E, et al. Matrix-addressable micropixellated InGaN light-emitting diodes with uniform emission and increased light output. IEEE Trans Electron Devices, 2007, 54: 2650–2658

    Article  CAS  Google Scholar 

  87. Fan J, Wang L, Guo J, et al. Optimized design on high-power GaN-based micro-LEDs. In: Proceedings of The International Society for Optical Engineering. Beijing: SPIE, 2008

    Google Scholar 

  88. Xu H, Zhang J, Davitt KM, et al. Application of blue-green and ultraviolet micro-LEDs to biological imaging and detection. J Phys D-Appl Phys, 2008, 41: 094013

    Article  Google Scholar 

  89. Gong Z, Massoubre D, McKendry J, et al. Flip-chip, micro-pixellated InGaN light-emitting diode arrays: Attractive sources for micro-displays, colour conversion, and fluorescence detection. Phys Status Solidi (c), 2009, 6: S848–S851

    Article  Google Scholar 

  90. Zhao JL, Wong KM, Keung CW, et al. Monolithic LED microdisplay on active matrix substrate using flip-chip technology. IEEE J Sel Top Quantum Electron, 2009, 15: 1298–1302

    Article  Google Scholar 

  91. Mckendry J, Rae BR, Gong Z, et al. Individually-addressable III-nitride micro-LED arrays for integrated CMOS control. In: 2009 IEEE LEOS Annual Meeting Conference Proceedings. Belek-Antalya: IEEE, 2009

    Google Scholar 

  92. McKendry J, Rae BR, Zheng Gong BR, et al. Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses. IEEE Photon Technol Lett, 2009, 21: 811–813

    Article  CAS  Google Scholar 

  93. Park SI, Xiong Y, Kim RH, et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977–981

    Article  CAS  Google Scholar 

  94. Cai Y, Haggar JIH, Zhu C, et al. Direct epitaxial approach to achieve a monolithic on-chip integration of a HEMT and a single micro-LED with a high-modulation bandwidth. ACS Appl Electron Mater, 2021, 3: 445–450

    Article  CAS  Google Scholar 

  95. Jiang HX, Jin SX, Li J, et al. III-nitride blue microdisplays. Appl Phys Lett, 2001, 78: 1303–1305

    Article  CAS  Google Scholar 

  96. Jeon CW, Kim KS, Dawson MD. Fabrication of two-dimensional InGaN-based micro-LED arrays. Phys Stat Sol (A), 2002, 192: 325–328

    Article  CAS  Google Scholar 

  97. Choi HW, Jeon CW, Dawson MD, et al. Fabrication and performance of parallel-addressed InGaN micro-LED arrays. IEEE Photon Technol Lett, 2003, 15: 510–512

    Article  Google Scholar 

  98. Choi HW, Jeon CW, Dawson MD. Fabrication of matrix-addressable micro-LED arrays based on a novel etch technique. J Cryst Growth, 2004, 268: 527–530

    Article  CAS  Google Scholar 

  99. Choi HW, Jeon CW, Dawson MD. High-resolution 128 × 96 nitride microdisplay. IEEE Electron Device Lett, 2004, 25: 277–279

    Article  CAS  Google Scholar 

  100. Wu Y, Ma J, Su P, et al. Full-color realization of micro-LED displays. Nanomaterials, 2020, 10: 2482

    Article  CAS  Google Scholar 

  101. Zhou X, Tian P, Sher CW, et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron, 2020, 71: 100263

    Article  Google Scholar 

  102. Liang KL, Kuo WH, Shen HT, et al. Advances in color-converted micro-LED arrays. Jpn J Appl Phys, 2021, 60: SA0802

    Article  CAS  Google Scholar 

  103. Xuan T, Shi S, Wang L, et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J Phys Chem Lett, 2020, 11: 5184–5191

    Article  CAS  Google Scholar 

  104. Kishino K, Sakakibara N, Narita K, et al. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl Phys Express, 2020, 13: 014003

    Article  CAS  Google Scholar 

  105. Huang Chen SW, Shen CC, Wu T, et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon Res, 2019, 7: 416

    Article  Google Scholar 

  106. Zhang X, Qi L, Chong WC, et al. Active matrix monolithic micro-LED full-color micro-display. J Soc Inf Display, 2020, 29: 47–56

    Article  CAS  Google Scholar 

  107. Sugiura N, Chuang CT, Hsieh CT, et al. 12.1-inch 169-PPI full-color micro-LED display using LTPS-TFT backplane. SID Symposium Digest Technical Papers, 2019, 50: 450–453

    Article  Google Scholar 

  108. Chen GS, Wei BY, Lee CT, et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photon Technol Lett, 2018, 30: 262–265

    Article  CAS  Google Scholar 

  109. Hyun BR, Sher CW, Chang YW, et al. Dual role of quantum dots as color conversion layer and suppression of input light for full-color micro-LED displays. J Phys Chem Lett, 2021, 12: 6946–6954

    Article  CAS  Google Scholar 

  110. Chen SWH, Huang YM, Singh KJ, et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photon Res, 2020, 8: 630

    Article  CAS  Google Scholar 

  111. Kim HM, Ryu M, Cha JHJ, et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display. J Soc Inf Display, 2019, 27: 347–353

    Article  CAS  Google Scholar 

  112. Lin HY, Sher CW, Hsieh DH, et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photon Res, 2017, 5: 411

    Article  CAS  Google Scholar 

  113. Han HV, Lin HY, Lin CC, et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express, 2015, 23: 32504

    Article  CAS  Google Scholar 

  114. Kim WH, Jang YJ, Kim JY, et al. High-performance color-converted full-color micro-LED arrays. Appl Sci, 2020, 10: 2112

    Article  CAS  Google Scholar 

  115. Yin Y, Hu Z, Ali MU, et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv Mater Technol, 2020, 5: 2000251

    Article  CAS  Google Scholar 

  116. Liu Z, Lin CH, Hyun BR, et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl, 2020, 9: 83

    Article  CAS  Google Scholar 

  117. Zhang D, Huang T, Duan L. Emerging self-emissive technologies for flexible displays. Adv Mater, 2020, 32: 1902391

    Article  CAS  Google Scholar 

  118. Liu YF, Feng J, Bi YG, et al. Recent developments in flexible organic light-emitting devices. Adv Mater Technol, 2019, 4: 1800371

    Article  Google Scholar 

  119. Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009, 459: 234–238

    Article  CAS  Google Scholar 

  120. Hung LS, Chen CH. Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng-R-Rep, 2002, 39: 143–222

    Article  Google Scholar 

  121. Kelley TW, Baude PF, Gerlach C, et al. Recent progress in organic electronics: Materials, devices, and processes. Chem Mater, 2004, 16: 4413–4422

    Article  CAS  Google Scholar 

  122. Li J, Hu Y, Liang X, et al. Micro organic light emitting diode arrays by patterned growth on structured polypyrrole. Adv Opt Mater, 2020, 8: 1902105

    Article  CAS  Google Scholar 

  123. Son J, Shin HY, Choi YM, et al. Descumming fluorous solution for photolithographic patterning of organic light-emitting diodes. MicroElectron Eng, 2020, 227: 111324

    Article  CAS  Google Scholar 

  124. Choi Y, Shin H, Son J, et al. Two-color pixel patterning for high-resolution organic light-emitting displays using photolithography. Micromachines, 2020, 11: 650

    Article  Google Scholar 

  125. Choi S, Kang C, Byun CW, et al. Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat Commun, 2020, 11: 2732

    Article  CAS  Google Scholar 

  126. Huo ST, Shao LQ, Dong T, et al. Real RGB printing AMOLED with high pixel per inch value. J Soc Inf Display, 2020, 28: 36–43

    Article  Google Scholar 

  127. Wu Z, Yan L, Li Y, et al. Development of 55-in. 8K AMOLED TV based on coplanar oxide thin-film transistors and inkjet printing process. J Soc Inf Display, 2020, 28: 418–427

    Article  CAS  Google Scholar 

  128. Hu Z, Yin Y, Ali MU, et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale, 2020, 12: 2103–2110

    Article  CAS  Google Scholar 

  129. Mathine DL, Woo HS, He W, et al. Organic LEDs heterogeneously integrated with CMOS circuitry. In: 1999 IEEE LEOS Annual Meeting Conference Proceedings LEOS’99 12th Annual Meeting IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat No99CH37009). San Francisco, CA: IEEE, 1999

    Google Scholar 

  130. Karl P, Webster EH, Olivier P. Design and manufacturing of active-matrix organic light-emitting microdisplays on silicon. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver, CO: SPIE, 1999

    Google Scholar 

  131. Han SH, Son YR, Lee SH, et al. High resolution OTFT-OLED on plastic substrate using self-organized process. SID Symposium Digest Technical Papers, 2007, 38: 1757–1760

    Article  CAS  Google Scholar 

  132. Hong SK, Sim JH, Seo IG, et al. New pixel design on emitting area for high resolution active-matrix organic light-emitting diode displays. J Display Technol, 2010, 6: 601–606

    Article  Google Scholar 

  133. Kajiyama Y, Joseph K, Kajiyama K, et al. Small feature sizes and high aperture ratio organic light-emitting diodes by using laser-patterned polyimide shadow masks. Appl Phys Lett, 2014, 104: 053303

    Article  Google Scholar 

  134. Ando M, Imai T, Yasumatsu R, et al. High-resolution printing of OLED displays. SID Symposium Digest Technical Papers, 2012, 43: 929–932

    Article  Google Scholar 

  135. Wolk MB, Lamansky S, Tolbert WA. Progress in laser induced thermal imaging of OLEDs. SID Symposium Digest, 2008, 39: 511

    Article  Google Scholar 

  136. Wolk MB, Baetzold JP, Bellmann E, et al. Laser thermal patterning of OLED materials. In: Kafafi ZH, Wolk MB, Lane PA, et al. Proceedings of Organic Light-Emitting Materials and Devices VIII. Denver, Colorado: SPIE, 2004

    Google Scholar 

  137. Jeon JH, Cha SJ, Jeon YM, et al. Thermal buffer materials for enhancement of device performance of organic light emitting diodes fabricated by laser imaging process. Org Electron, 2014, 15: 2802–2809

    Article  CAS  Google Scholar 

  138. Cho SH, Lee SM, Suh MC. Enhanced efficiency of organic light emitting devices (OLEDs) by control of laser imaging condition. Org Electron, 2012, 13: 833–839

    Article  CAS  Google Scholar 

  139. Cho H, Lee HN, Jeong YC, et al. Solution and evaporation hybrid approach to enhance the stability and pattern resolution characteristics of organic light-emitting diodes. ACS Appl Mater Interfaces, 2020, 12: 45064–45072

    Article  CAS  Google Scholar 

  140. Cha SJ, Jeon JH, Suh MC. Full color organic light emitting diodes with laser-patterned optical path-length compensation layer. Org Electron, 2014, 15: 2830–2836

    Article  CAS  Google Scholar 

  141. Han JH, Kim D, Lee TW, et al. Ultra-high-resolution organic light-emitting diodes with color conversion electrode. ACS Photonics, 2018, 5: 1891–1897

    Article  CAS  Google Scholar 

  142. Joo WJ, Kyoung J, Esfandyarpour M, et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 2020, 370: 459–463

    Article  CAS  Google Scholar 

  143. Zheng X, Liu Y, Zhu Y, et al. Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Optical Mater, 2020, 101: 109755

    Article  CAS  Google Scholar 

  144. Dai X, Deng Y, Peng X, et al. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv Mater, 2017, 29: 1607022

    Article  Google Scholar 

  145. Shang Y, Ning Z. Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. Natl Sci Rev, 2017, 4: 170–183

    Article  CAS  Google Scholar 

  146. Sun Y, Jiang Y, Sun XW, et al. Beyond OLED: Efficient quantum dot light-emitting diodes for display and lighting application. Chem Rec, 2019, 19: 1729–1752

    Article  CAS  Google Scholar 

  147. Yang J, Choi MK, Yang UJ, et al. Toward full-color electroluminescent quantum dot displays. Nano Lett, 2021, 21: 26–33

    Article  CAS  Google Scholar 

  148. Yang J, Yoo J, Yu WS, et al. Polymer-assisted high-resolution printing techniques for colloidal quantum dots. Macromol Res, 2021, 29: 391–401

    Article  CAS  Google Scholar 

  149. Han J, Ko D, Park M, et al. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. Jnl Soc Info Display, 2016, 24: 545–551

    Article  CAS  Google Scholar 

  150. Shi L, Meng L, Jiang F, et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv Funct Mater, 2019, 29: 1903648

    Article  Google Scholar 

  151. Wood V, Panzer MJ, Chen J, et al. Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv Mater, 2009, 21: 2151–2155

    Article  CAS  Google Scholar 

  152. Liu Y, Li F, Qiu L, et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano, 2019, 13: acsnano.8b08582

    Article  Google Scholar 

  153. Yang P, Zhang L, Kang DJ, et al. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv Opt Mater, 2020, 8: 1901429

    Article  CAS  Google Scholar 

  154. Li H, Duan Y, Shao Z, et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Adv Mater Technol, 2020, 5: 2000401

    Article  CAS  Google Scholar 

  155. Mei W, Zhang Z, Zhang A, et al. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res, 2020, 13: 2485–2491

    Article  CAS  Google Scholar 

  156. Kang HL, Kang J, Won JK, et al. Spatial light patterning of full color quantum dot displays enabled by locally controlled surface tailoring. Adv Opt Mater, 2018, 6: 1701335

    Article  Google Scholar 

  157. Ko J, Chang JH, Jeong BG, et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl Mater Interfaces, 2020, 12: 42153–42160

    Article  Google Scholar 

  158. Yang J, Hahm D, Kim K, et al. High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nat Commun, 2020, 11: 2874

    Article  CAS  Google Scholar 

  159. Lu S, Fu Z, Li F, et al. Beyond a linker: The role of photochemistry of crosslinkers in the direct optical patterning of colloidal nanocrystals. Angew Chem Int Ed, 2022, 61: e202202633

    Article  CAS  Google Scholar 

  160. Lin CH, Zeng Q, Lafalce E, et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv Opt Mater, 2018, 6: 1800474

    Article  Google Scholar 

  161. Cho H, Pan JA, Wu H, et al. Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange. Adv Mater, 2020, 32: 2003805

    Article  CAS  Google Scholar 

  162. Kim LA, Anikeeva PO, Coe-Sullivan SA, et al. Contact printing of quantum dot light-emitting devices. Nano Lett, 2008, 8: 4513–4517

    Article  CAS  Google Scholar 

  163. Kim TH, Cho KS, Lee EK, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176–182

    Article  CAS  Google Scholar 

  164. Cho H, Kwak J, Lim J, et al. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: Effect of surface energy on device performance. ACS Appl Mater Interfaces, 2015, 7: 10828–10833

    Article  CAS  Google Scholar 

  165. Choi MK, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun, 2015, 6: 7149

    Article  CAS  Google Scholar 

  166. Kim BH, Nam S, Oh N, et al. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 2016, 10: 4920–4925

    Article  CAS  Google Scholar 

  167. Nam TW, Kim M, Wang Y, et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nat Commun, 2020, 11: 3040

    Article  CAS  Google Scholar 

  168. Bae J, Lee S, Ahn J, et al. 3D-printed quantum dot nanopixels. ACS Nano, 2020, 14: 10993–11001

    Article  CAS  Google Scholar 

  169. Xing X, Man Z, Bian J, et al. High-resolution combinatorial patterning of functional nanoparticles. Nat Commun, 2020, 11: 6002

    Article  CAS  Google Scholar 

  170. Schift H. Nanoimprint lithography: An old story in modern times? A review. J Vac Sci Technol B, 2008, 26: 458

    Article  CAS  Google Scholar 

  171. Zankovych S, Hoffmann T, Seekamp J, et al. Nanoimprint lithography: Challenges and prospects. Nanotechnology, 2001, 12: 91–95

    Article  CAS  Google Scholar 

  172. Agrawal H, Garnett EC. Nanocube imprint lithography. ACS Nano, 2020, 14: 11009–11016

    Article  CAS  Google Scholar 

  173. Gao X, Liu Y, Zhang H, et al. Nanoimprinted structures for organic light-emitting devices and lasers. Chin J Liquid Cryst Displays, 2021, 36: 8–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program of China (2022YFB3606500), the National Natural Science Foundation of China (62075043), and Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ126).

Author information

Authors and Affiliations

Authors

Contributions

The original idea was conceived by Li F and Zheng Y. The manuscript was drafted by Zheng Y, Yu Y, Chen W, Hu H, Guo T and Li F. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Wei Chen  (陈伟) or Fushan Li  (李福山).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yueting Zheng is a doctoral student in information optoelectronics technology at Fuzhou University. Her research interest mainly focuses on optoelectric materials and devices.

Wei Chen received his PhD degree from Fuzhou University in 2019. He is now an associate research fellow at Fuzhou University. His research interest focuses on the development of novel quantum dot materials and their applications in optoelectronic devices.

Fushan Li received his PhD degree from the School of Physics, Peking University, in 2005. He has been with the School of Physics and Information Engineering of Fuzhou University as a full professor since October, 2009. His research speciality is nanoelectronic devices and fabrication technology, especially on the optoelectronic properties of various nanomaterials for application in next-generation light-emitting devices, photovoltaic, and memristors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Yu, Y., Chen, W. et al. High-resolution light-emitting devices for display applications. Sci. China Mater. 66, 2128–2145 (2023). https://doi.org/10.1007/s40843-022-2410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2410-4

Keywords

Navigation