Skip to main content
Log in

On the Filtration of Micropolar Fluid Through a Thin Pipe

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This paper reports the analytical results on the incompressible micropolar fluid flowing through a thin (or long) cylindrical pipe filled with porous medium. We start from the Brinkman-type system governing the filtration of the micropolar flow and perform the asymptotic analysis in the critical case characterized by the strong coupling between the velocity and microrotation. The error estimates are also derived providing the rigorous justification of the proposed effective model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aero, E.L., Kuvshinsky, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Trans.: Sov. Phys. Solid State 2, 1272–1281 (1961)

    MathSciNet  Google Scholar 

  2. Allaire, A.: Homogenization of the Navier Stokes equations in open sets perforated with thiny holes I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)

    Article  MATH  Google Scholar 

  3. Ahmed, A., Nadeem, S.: Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys. 7, 4130–4139 (2017)

    Article  Google Scholar 

  4. Bayada, G., Benhaboucha, N., Chambat, M.: New models in micropolar fluid and their applications to lubrication. Math. Mod. Meth. Appl. Sci. 15, 343–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beneš, M., Pažanin, I.: Effective flow of incompressible micropolar fluid through a system of thin pipes. Acta Appl. Math. 143, 29–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B/Fluids 72, 501–518 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: A generalized Reynolds equation for micropolar flows past a ribbed surface with nonzero boundary conditions, ESAIM: Math. Model. Numer. Anal. 56, 1255–1305 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)

    MATH  Google Scholar 

  9. Darcy, H.P.G.: Les fontaines publiques de la ville de Dijon. Victor Darmon, Paris (1856)

    Google Scholar 

  10. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Mod. Meth. Appl. Sci. 14, 735–758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dupuy, D., Panasenko, G., Stavre, R.: Asymptotic solution for a micropolar flow in a curvilinear channel. Z. Angew. Math. Mech. 88, 793–807 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–16 (1966)

    MathSciNet  Google Scholar 

  13. Haghighi, A.R., Shahbazi, M.: Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis. Int. J. Biomath. 08, 1550056 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamel, M.T., Roach, D., Hamdan, M.H.: On the micropolar fluid flow through porous media. In: Proceedings of the 11th WSEAS International conference on mathematical methods, computational techniques and inteligent systmes, 190–197 (2009)

  16. Khanukaeva, DYu., Fillipov, A.N., Yadav, P.K., Tiwari, A.: Creeping fow of micropolar fluid parallel to the axis of cylindrical cells with porous layer. Eur. J. Mech. B/Fluids 76, 73–80 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khanukaeva, DYu.: Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer. Theor. Comput. Fluid Dyn. 34, 215–229 (2020)

    Article  MathSciNet  Google Scholar 

  18. Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21, 11–23 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lukaszewicz, G.: Micropolar Fluids: Theory and Applications. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  20. Marušić-Paloka, E.: Rigorous justification of the Kirchhoff law for junction of thin pipes filled with viscous fluid. Asymptot. Anal. 33, 51–66 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Marušić-Paloka, E., Pažanin, I.: Fluid flow through a helical pipe. Z. Angew. Math. Phys. 58, 81–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marušić-Paloka, E., Pažanin, I., Marušić, S.: Comparison between Darcy and Brinkman laws in a fracture. Appl. Math. Comput. 218, 7538–7545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mekheimer, Kh.S., El Kot, M.A.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sinica 24, 637–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer-Verlag, New York (2006)

    MATH  Google Scholar 

  25. Pažanin, I.: Effective flow of micropolar fluid through a thin or long pipe. Math. Probl. Eng. (2011). https://doi.org/10.1155/2011/127070

    Article  MathSciNet  MATH  Google Scholar 

  26. Pažanin, I.: Asymptotic behavior of micropolar fluid flow through a curved pipe. Acta Appl. Math. 116, 1–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pažanin, I.: On the micropolar flow in a circular pipe: the effects of the viscosity coefficients. Theor. Appl. Mech. Lett. 1, 062004 (2011)

    Article  Google Scholar 

  28. Sanchez-Palencia, E.: On the asymptotics of the fluid flow past an array of fixed obstacles. Int. J. Eng. Sci. 20, 1291–1301 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Srinivasacharya, D., Srikanth, D.: Flow of a micropolar fluid through cathererized artery-a mathematical model. Int. J. Biomath. 5, 1250019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Croatian Science Foundation under the project Multiscale problems in fluid mechanics - MultiFM (IP-2019-04-1140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pažanin.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pažanin, I. On the Filtration of Micropolar Fluid Through a Thin Pipe. Bull. Malays. Math. Sci. Soc. 46, 186 (2023). https://doi.org/10.1007/s40840-023-01583-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-023-01583-2

Keywords

Mathematics Subject Classification

Navigation