Skip to main content
Log in

\({\mathcal {F}}\)-Copartial Morphisms

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, first we give the definition of \({\mathcal {F}}\)-copartial morphisms with an additive exact substructure \({\mathcal {F}}\) of an exact structure \({\mathcal {E}}\) in an additive category \({\mathcal {A}}\). Then, we study many properties of \({\mathcal {F}}\)-copartial morphisms. Moreover, we define \({\mathcal {F}}\)-copartial morphisms with a pure-exact structure \({\mathcal {F}}\) and with a finite pure-exact structure \({\mathcal {F}}\) in the category of modules over a ring and call them copartial morphisms and finitely copartial morphisms, respectively. We also investigate the relations between them and give the new characterizations of finitely (singly) pure-projective modules, flat modules and finitely (singly) projective modules with copartial morphisms and finitely copartial morphisms. Finally, we define \(\mu \)-partial morphisms for a defining matrix \(\mu \) and give a new characterization of semi-compact modules with \(\mu \)-partial morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azumaya, G.: Finite splitness and finite projectivity. J. Algebra 106, 114–134 (1987). https://doi.org/10.1016/0021-8693(87)90024-X

    Article  MathSciNet  MATH  Google Scholar 

  2. Behboodi, M., Couchot, F., Shojaee, S.H.: \(\Sigma \)-semi-compact rings and modules. J. Algebra Its Appl. (2014). https://doi.org/10.1142/S0219498814500698

    Article  MATH  Google Scholar 

  3. Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010). https://doi.org/10.1016/j.exmath.2009.04.004

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohn, P.M.: On the free product of associative rings. Math. Z. 71, 380–398 (1959). https://doi.org/10.1007/BF01181410

    Article  MathSciNet  MATH  Google Scholar 

  5. Cortés-Izurdiaga, M., Guil Asensio, P.A., Kalebog̃az, B., Srivastava, A.K.: Ziegler partial morphisms in additive exact categories. Bull. Math. Sci. Vol. (2020). https://doi.org/10.1142/S1664360720500125

  6. Fieldhouse, D.J.: Pure theories. Math. Ann. 184, 1–18 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, X.H., Guil Asensio, P.A., Herzog, I., Torrecillas, B.: Ideal approximation theory. Adv. Math. 244, 750–790 (2013). https://doi.org/10.1016/j.aim.2013.05.020

    Article  MathSciNet  MATH  Google Scholar 

  8. Gillespie, J.: Model structures on exact categories. J. Pure Appl. Algebra 215, 2892–2902 (2011). https://doi.org/10.1016/j.jpaa.2011.04.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Gnacadja, G.P.: Phantom maps in the stable module category. J. Algebra 201(2), 686–702 (1998). https://doi.org/10.1006/jabr.1997.7303

    Article  MathSciNet  MATH  Google Scholar 

  10. Herzog, I.: The phantom cover of a module. Adv. Math. 215(1), 220–249 (2007). https://doi.org/10.1016/j.aim.2007.03.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Hovey, M.: Cotorsion pairs, model category structures, and representation theory. Math. Z. 241, 553–592 (2002). https://doi.org/10.1007/s00209-002-0431-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Jones, M.F.: f-Projectivity and flat epimorphisms. Comm. Algebra 9, 1603–1616 (1981). https://doi.org/10.1080/00927878108822670

    Article  MathSciNet  MATH  Google Scholar 

  13. Keller, B.: Chain complexes and stable categories. Manuscripta Math. 67(4), 379–417 (1990). https://doi.org/10.1007/BF02568439

    Article  MathSciNet  MATH  Google Scholar 

  14. Krause, H., Solberg, O.: Applications of cotorsion pairs. J. London Math. Soc. 68, 631–650 (2003). https://doi.org/10.1112/S0024610703004757

    Article  MathSciNet  MATH  Google Scholar 

  15. Mao, L.: Finitely phantom morphisms and finitely split epimorphisms. Colloq. Math. 160, 71–87 (2020). https://doi.org/10.4064/cm7659-3-2019

    Article  MathSciNet  MATH  Google Scholar 

  16. Monari Martinez, E.: On pure-injective modules, in Abelian Groups and Modules (Udine, 1984), CISM Courses and Lectures, Vol. 287 (Springer, Vienna, 1984), pp. 383–393. https://doi.org/10.1007/978-3-7091-2814-5_29

  17. Neeman, A.: The derived category of an exact category. J. Algebra 135, 388–394 (1990). https://doi.org/10.1016/0021-8693(90)90296-Z

    Article  MathSciNet  MATH  Google Scholar 

  18. Saorin, M., Šťovíček, J.: On exact categories and applications to triangulated adjoints and model structures. Adv. Math. 228(2), 968–1007 (2011). https://doi.org/10.1016/j.aim.2011.05.025

    Article  MathSciNet  MATH  Google Scholar 

  19. Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 217. Springer-Verlag, New York (1975)

    Book  MATH  Google Scholar 

  20. Šťovíček, J.: Exact model categories, approximation theory, and cohomology of quasi-coherent sheaves, In: advances in representation theory of algebras, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, (2013). https://doi.org/10.4171/125-1/10

  21. Quillen, D.: Higher algebraic K-theory: I, Higher K-theories. Lecture Notes in Math. 341, 85–147 (1973). https://doi.org/10.1007/BFb0067053

    Article  MathSciNet  MATH  Google Scholar 

  22. Warfield, R.B.: Purity and algebraic compactness for modules. Pacific J. Math. 28, 699–719 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wisbauer, R.: Foundations of module and ring theory. A handbook for study and research. Algebra, logic and applications, 3. Gordon and Breach Science Publishers, Philadelphia, (1991)

  24. Ziegler, M.: Model theory of modules. Annals Pure Appl. Logic 26, 149–213 (1984). https://doi.org/10.1016/0168-0072(84)90014-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the referee for his/her comments and suggestions.

Funding

No funding available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berke Kalebog̃az.

Ethics declarations

Conflict of Interest

The author declares that she has no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalebog̃az, B. \({\mathcal {F}}\)-Copartial Morphisms. Bull. Malays. Math. Sci. Soc. 46, 32 (2023). https://doi.org/10.1007/s40840-022-01407-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40840-022-01407-9

Keywords

Mathematics Subject Classification

Navigation