Skip to main content
Log in

A New Family of Archimedean Copulas: The Truncated-Poisson Family of Copulas

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

Copulas are multivariate distribution functions which their margins are distributed uniformly. Therefore, copulas are pretty useful for modeling several types of data. As they allow different dependence patterns. A numerous number of new classes of copulas have been suggested in the literature. Each granted different characteristics that make it compatible with certain type of data. In this paper, we introduce a new family of Archimedean copulas. The multiplicative Archimedean generator of this copula is the inverse of the probability generating function of a truncated-Poisson distribution. The properties of this copula are studied in detail. Three applications are provided for the sake of comparison between this copula and well-known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The authors thanks Prof. Wissem Jedidi for supplying this part of the proof of this theorem.

References

  1. Abd Elaal, M.K., Jarwan, R.S.: Inference of bivariate generalized exponential distribution based on copula functions. Appl. Math. Sci. 11(24), 1155–1186 (2017)

    Google Scholar 

  2. Alhadlaq, W., Alzaid, A.: Distribution function, probability generating function and archimedean generator. Symmetry 12(12), 2108 (2020)

    Article  Google Scholar 

  3. Ali, M.M., Mikhail, N., Haq, M.S.: A class of bivariate distributions including the bivariate logistic. J. Multivar. Anal. 8(3), 405–412 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almetwally, E.M., Muhammed, H.Z., El-Sherpieny, E.-S.A.: Bivariate weibull distribution: properties and different methods of estimation. Ann. Data Sci. 7(1), 163–193 (2020)

    Article  Google Scholar 

  5. Barbiero, A.: A bivariate count model with discrete weibull margins. Math. Comput. Simul. 156, 91–109 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbiero, A.: Modeling correlated counts in reliability engineering. In: Advances in System Reliability Engineering, pp. 167–191. Elsevier (2019)

  7. Bekrizadeh, H.: Generalized family of copulas: definition and properties. Thailand Stat. 19(1), 163–178 (2021)

    MATH  Google Scholar 

  8. Block, H.W., Basu, A.: A continuous, bivariate exponential extension. J. Am. Stat. Assoc. 69(348), 1031–1037 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T.: Copulas for finance-a reading guide and some applications. Available at SSRN 1032533, (2000)

  10. Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding aic and bic in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)

    Article  MathSciNet  Google Scholar 

  11. Choroś, B., Ibragimov, R., Permiakova, E.: Copula estimation. In: Copula theory and its applications, pp. 77–91. Springer (2010)

  12. Clayton, D.G.: A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1), 141–151 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dall’Aglio, G.: Fréchet classes: the beginnings. In: Advances in Probability Distributions with Given Marginals, pp. 1–12. Springer (1991)

  14. Denuit, M., Lambert, P.: Constraints on concordance measures in bivariate discrete data. J. Multivar. Anal. 93(1), 40–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Durante, F., Quesada-Molina, J.J., Sempi, C.: A generalization of the archimedean class of bivariate copulas. Ann. Inst. Stat. Math. 59(3), 487–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durante, F., Sempi, C.: Principles of copula theory, vol. 474. CRC press, Boca Raton (2016)

    MATH  Google Scholar 

  17. Fisher, N., Sen, P. (eds.): The collected works of Wassily Hoeffding. Springer, New York (1994)

    Google Scholar 

  18. Frank, M.J.: On the simultaneous associativity off (x, y) andx+ y- f (x, y). Aequationes Math. 19(1), 194–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fréchet, M.: Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon, 3ê Serie, Sci. Sect. A 14, 53–77 (1951)

    MATH  Google Scholar 

  20. Genest, C., Boies, J.-C.: Detecting dependence with kendall plots. Am. Stat. 57(4), 275–284 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Genest, C., Ghoudi, K., Rivest, L.-P.: A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3), 543–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Genest, C., MacKay, R.J.: Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Can. J. Stat. 14(2), 145–159 (1986)

    Article  MATH  Google Scholar 

  23. Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power study. Insur. Math. Econom. 44(2), 199–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Genest, C., Rivest, L.-P.: Statistical inference procedures for bivariate archimedean copulas. J. Am. Stat. Assoc. 88(423), 1034–1043 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Georges, P., Lamy, A.-G., Nicolas, E., Quibel, G., Roncalli, T.: Multivariate survival modelling: a unified approach with copulas. Available at SSRN 1032559, (2001)

  26. Hoeffding, W.: Masstabinvariante korrelationstheorie. Schriften des Mathematischen Instituts und Instituts fur Angewandte Mathematik der Universitat Berlin 5, 181–233 (1940)

    Google Scholar 

  27. Hoeffding, W.: Masstabinvariante korrelationsmasse für diskontinuierliche verteilungen. Archiv für mathematische Wirtschafts-und Sozialforschung 7, 49–70 (1941)

    Google Scholar 

  28. Hougaard, P.: Modelling multivariate survival. Scand. J. Stat. pp. 291–304 (1987)

  29. Hutchinson, T.P., Lai, C.D.: Continuous bivariate distributions emphasising applications. Technical report (1990)

  30. Joe, H.: Parametric families of multivariate distributions with given margins. J. Multivar. Anal. 46(2), 262–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Joe, H.: Multivariate models and multivariate dependence concepts. CRC Press, Boca Raton (1997)

    Book  MATH  Google Scholar 

  32. Karlin, S.: Total positivity, vol. 1. Stanford University Press (1968)

  33. Kim, J.-M., Sungur, E.A.: New class of bivariate copulas. In: Proceedings for the Spring Conference of Korean Statistical Society, pp. 207–212 (2004)

  34. Klugman, S.A., Parsa, R.: Fitting bivariate loss distributions with copulas. Insur. Math. Econom. 24(1–2), 139–148 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolev, N., Anjos, U., Mendes, BVd.M.: Copulas: a review and recent developments. Stoch. Model. 22(4), 617–660 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous multivariate distributions, Volume 1: models and applications, vol. 1. Wiley, Hoboken (2004)

    Book  MATH  Google Scholar 

  37. Kumar, P.: Copula functions and applications in engineering. In: Logistics, supply chain and financial predictive analytics, pp. 195–209. Springer (2019)

  38. Kundu, D., Dey, A.K.: Estimating the parameters of the Marshall-Olkin bivariate weibull distribution by em algorithm. Comput. Stat. Data Anal. 53(4), 956–965 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kundu, D., Gupta, R.D.: Absolute continuous bivariate generalized exponential distribution. AStA Adv. Stat. Anal. 95(2), 169–185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X., Fang, R.: A new family of bivariate copulas generated by univariate distributions. J. Data Sci. 10(1), 107–127 (2012)

    MathSciNet  Google Scholar 

  41. Marshall, A.W., Olkin, I.: A generalized bivariate exponential distribution. J. Appl. Probab. 4(2), 291–302 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  42. Marshall, A.W., Olkin, I.: Families of multivariate distributions. J. Am. Stat. Assoc. 83(403), 834–841 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mazo, G., Girard, S., Forbes, F.: A class of multivariate copulas based on products of bivariate copulas. J. Multivar. Anal. 140, 363–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. McGilchrist, C., Aisbett, C.: Regression with frailty in survival analysis. Biometrics, pp. 461–466 (1991)

  45. Mesfioui, M., Quessy, J.-F., Toupin, M.-H.: On a new goodness-of-fit process for families of copulas. Can. J. Stat. 37(1), 80–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mesfioui, M., Tajar, A.: On the properties of some nonparametric concordance measures in the discrete case. Nonparamet. Stat. 17(5), 541–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mirhosseini, S.M., Amini, M., Kundu, D., Dolati, A.: On a new absolutely continuous bivariate generalized exponential distribution. Stat. Methods Appl. 24(1), 61–83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mitchell, C., Paulson, A.: A new bivariate negative binomial distribution. Naval Res. Logist. Quart. 28(3), 359–374 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Najjari, V., Bacigál, T., Bal, H.: An archimedean copula family with hyperbolic cotangent generator. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 22(05), 761–768 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nelsen, R.B.: An introduction to copulas. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

  51. Panchenko, V.: Goodness-of-fit test for copulas. Physica A 355(1), 176–182 (2005)

    Article  MathSciNet  Google Scholar 

  52. Patton, A.J.: A review of copula models for economic time series. J. Multivar. Anal. 110, 4–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Plackett, R.L.: A class of bivariate distributions. J. Am. Stat. Assoc. 60(310), 516–522 (1965)

    Article  MathSciNet  Google Scholar 

  54. Sklar, M.: Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)

    MathSciNet  MATH  Google Scholar 

  55. Smith, M.D.: Modelling sample selection using archimedean copulas. Economet. J. 6(1), 99–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Trivedi, P.K., Zimmer, D.M.: Copula modeling: an introduction for practitioners. Now Publishers Inc (2007)

  57. Zamani, H., Faroughi, P., Ismail, N.: Bivariate poisson-lindley distribution with application. J. Math. Stat. 11(1), 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Deanship of scientific research in King Saud University for funding and supporting this research through the initiative of DSR Graduate Students Research Support (GSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weaam M. Alhadlaq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proofs

1.1 Proof of Theorem 2

  1. i

    To prove that \(\lim _{\theta \rightarrow 0}{C_T\left( u,v;\theta \right) }=uv\), we only need to prove that

    $$\begin{aligned} \lim _{\theta \rightarrow 0}{\frac{\psi _\theta (t)\ln \left[ \psi _\theta (s)\right] }{\psi _\theta ^{\prime }(t)}} =t\ln \left[ s\right] , \end{aligned}$$

    (see Nelsen [50], Pages 139–140). Therefore,

    $$\begin{aligned} \lim _{\theta \rightarrow 0}\frac{\psi _\theta (t)\ln \left[ \psi _\theta (s)\right] }{\psi _\theta ^{\prime }(t)}&=\lim _{\theta \rightarrow 0}\frac{(1+\theta t)\ln \left[ 1+\theta t\right] }{\theta }\ln \left[ {\frac{\ln \left[ 1+\theta s\right] }{\ln \left[ 1+\theta \right] }}\right] \\&=\lim _{\theta \rightarrow 0}\frac{(1+\theta t)\ln \left[ 1+\theta t\right] }{\theta }\ln \left[ \lim _{\theta \rightarrow 0}{\frac{\ln \left[ 1+\theta s\right] }{\ln \left[ 1+\theta \right] }}\right] . \end{aligned}$$

    Using L’Hôpital’s rule for both limits, we get

    $$\begin{aligned} \lim _{\theta \rightarrow 0}\frac{\psi _\theta (t)\ln \left[ \psi _\theta (s)\right] }{\psi _\theta ^{\prime }(t)} =&\lim _{\theta \rightarrow 0}\left[ t\ln \left[ 1+\theta t\right] +t\right] \ln \left[ \lim _{\theta \rightarrow 0}{\frac{\left( 1+\theta \right) s}{1+\theta s}}\right] =t\ln \left[ s\right] . \end{aligned}$$

    Thus, \(\lim _{\theta \rightarrow 0}{C_T\left( u,v\right) }=uv\).

  2. ii

    For \(\theta \rightarrow \infty \), we have\(^*\)Footnote 1

    $$\begin{aligned} \lim _{\theta \rightarrow \infty }\frac{\psi _\theta (t)\ln \left[ \psi _\theta (s)\right] }{\psi _\theta ^{\prime }(t)}&=\lim _{\theta \rightarrow \infty }\frac{\left( 1+\theta t\right) \ln \left[ 1+\theta t\right] \ln \left[ {\frac{\ln \left[ 1+\theta s\right] }{\ln \left[ 1+\theta \right] }}\right] }{\theta }\\&=\lim _{\theta \rightarrow \infty }{\left( \frac{1}{\theta }+t\right) } \lim _{\theta \rightarrow \infty }{\ln \left[ 1+\theta t\right] \ln {\left[ \frac{\ln \left[ \frac{\left( 1+\theta s\right) }{\left( 1+\theta \right) }\right] }{\ln \left[ 1+\theta \right] }+1\right] }}. \end{aligned}$$

    Note that for small x, we have \(\ln {\left[ 1+x\right] }\sim x\). Also, for large \(\theta \), \(\ln \left[ \frac{\left( 1+\theta s\right) }{1+\theta }\right] \) tends to \(\ln {\left[ s\right] }\) and hence \(\frac{\ln \left[ \frac{\left( 1+\theta s\right) }{\left( 1+\theta \right) }\right] }{\ln \left[ 1+\theta \right] }\) becomes small. Therefore, \(\ln {\left[ \frac{\ln \left[ \frac{\left( 1+\theta s\right) }{\left( 1+\theta \right) }\right] }{\ln \left[ 1+\theta \right] }+1\right] }\sim \frac{\ln \left[ s\right] }{\ln \left[ 1+\theta \right] }\). This implies

    $$\begin{aligned}&\lim _{\theta \rightarrow \infty }{\left( \frac{1}{\theta }+t\right) }\lim _{\theta \rightarrow \infty }{\ln {\left[ 1+\theta t\right] }}\ln {\left[ \frac{\ln \left[ \frac{\left( 1+\theta s\right) }{\left( 1+\theta \right) }\right] }{\ln \left[ 1+\theta \right] }+1\right] } \\&\quad =t\lim _{\theta \rightarrow \infty }\frac{\ln \left[ 1+\theta t\right] \ln \left[ s\right] }{\ln \left[ 1+\theta \right] }=t\ln \left[ s\right] . \end{aligned}$$

    Hence, \(\lim _{\theta \rightarrow \infty }{C_T\left( u,v;\theta \right) }=uv\). \(\square \)

1.2 Proof of Theorem 3

The density of the truncated-Poisson copula is given by

$$\begin{aligned} c_T(u,v)=\frac{\theta e^{\frac{\ln \left[ 1+\theta u\right] \ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }}\left[ 1+\frac{\ln \left[ 1+\theta u\right] \ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }\right] }{(1+\theta u)(1+\theta v)\ln \left[ 1+\theta \right] };\quad 0\le u,v\le 1,\theta \ge 0. \end{aligned}$$

This function is a product of the two non-negative functions

$$\begin{aligned} f_1\left( u,v\right) =e^{\frac{\ln \left[ 1+\theta u\right] \ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }}; \end{aligned}$$

and

$$\begin{aligned} f_2\left( u,v\right) =\theta \frac{\ln \left[ 1+\theta \right] +\ln \left[ 1+\theta u\right] \ln \left[ 1+\theta v\right] }{\left( 1+\theta u\right) \left( 1+\theta v\right) \ln ^{2}\left[ 1+\theta \right] }. \end{aligned}$$

Second derivatives for the natural logarithms of \(f_1\) and \(f_2\) are \(\frac{\partial ^{2}\ln \left[ f_1\left( u,v\right) \right] }{\partial u \partial v}=\frac{\theta ^2}{\left( 1+\theta u\right) \left( 1+\theta v\right) \ln \left[ 1+\theta \right] }\ge 0\) and \(\frac{\partial \ln \left[ f_2\left( u,v\right) \right] }{\partial u}=\frac{\theta \ln {\left[ 1+\theta v\right] }}{\left( 1+\theta u\right) \left[ \ln {\left[ 1+\theta \right] }+\ln {\left[ 1+\theta u\right] }\ln {\left[ 1+\theta v\right] }\right] }-\frac{\theta }{1+\theta u}\), respectively. Hence, \(\ln {f_1}\) and \(\ln {f_2}\) are both supermodulars. Thus, \(f_1\) and \(f_2\) are \(TP_2\) functions. Therefore, the multiple of the two functions \(c_T=f_1f_2\) is also \(TP_2\) (see Karlin [32]). \(\square \)

1.3 Proof of Theorem 4

In terms of copulas, Spearman’s Rho correlation is given by

$$\begin{aligned} \rho _{C_T}&=12 \int _{0}^{1}\int _{0}^{1}C_T\left( u,v;\theta \right) \times dudv-3\\&=12\int _{0}^{1}\int _{0}^{1}\frac{1}{\theta }\left[ e^{\frac{\ln \left[ 1+\theta u\right] \ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }}-1\right] dudv -3\\&=12\int _{0}^{1}\int _{0}^{1}\frac{1}{\theta }\left[ \left( 1+\theta u\right) ^\frac{\ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }-1\right] dudv-3\\&=12\int _{0}^{1}\frac{1}{\theta } \left[ \frac{\left( 1+\theta \right) ^{\frac{\ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }+1}}{\theta \left[ \frac{\ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }+1\right] }-\frac{1}{\theta \left[ \frac{\ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }+1\right] }-1 \right] dv-3\\&=12\int _{0}^{1} \left[ \frac{\ln \left[ 1+\theta \right] \left[ \left( 1+\theta \right) ^{\frac{\ln \left[ 1+\theta v\right] }{\ln \left[ 1+\theta \right] }+1}-1\right] }{\theta ^2 \left[ \ln \left[ 1+\theta v\right] +\ln \left[ 1+\theta \right] \right] }-\frac{1}{\theta } \right] dv-3\\&=12\frac{\ln \left[ 1+\theta \right] }{\theta ^2}\left[ \int _{0}^{1} \frac{\left( 1+\theta \right) \left( 1+\theta v\right) }{\ln \left[ \left( 1+\theta \right) \left( 1+\theta v\right) \right] } dv-\int _{0}^{1} \frac{1}{\ln \left[ \left( 1+\theta \right) \left( 1+\theta v\right) \right] } dv\right] \\&\qquad -\frac{12}{\theta }-3. \end{aligned}$$

For \(\theta \ge 0\), take \(t=2\ln \left[ \left( 1+\theta \right) \left( 1+\theta v\right) \right] \) for the first integral, and \(s=\left( 1+\theta \right) \left( 1+\theta v\right) \) for the second one. Hence,

$$\begin{aligned} \rho _{C_T}=&12\frac{\ln \left[ 1+\theta \right] }{\theta ^2}\left[ \frac{1}{\theta \left( 1+\theta \right) } \int _{2\ln \left[ 1+\theta \right] }^{4\ln \left[ 1+\theta \right] } \left[ \frac{e^{t}}{t}\right] dt-\frac{1}{\theta \left( 1+\theta \right) } \int _{\left( 1+\theta \right) }^{\left( 1+\theta \right) ^2} \frac{ds}{\ln \left[ s\right] } \right] \\&\qquad -\frac{12}{\theta }-3\\ =&12\frac{\ln \left[ 1+\theta \right] }{\theta ^3\left( 1+\theta \right) }\biggl [ \int _{-\infty }^{4\ln \left[ 1+\theta \right] } \left[ \frac{e^{t}}{t}\right] dt-\int _{-\infty }^{2\ln \left[ 1+\theta \right] } \left[ \frac{e^{t}}{t}\right] dt- \int _{0}^{\left( 1+\theta \right) ^2} \frac{ds}{\ln \left[ s\right] }\\&+\int _{0}^{\left( 1+\theta \right) } \frac{ds}{\ln \left[ s\right] } \biggl ]-\frac{12}{\theta }-3\\ =&12\frac{\ln \left[ 1+\theta \right] }{\theta ^3\left( 1+\theta \right) }\bigl [ Ei\left( 4\ln \left[ 1+\theta \right] \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) - li\left( \left( 1+\theta \right) ^2\right) +li\left( 1+\theta \right) \bigl ]\\&-\frac{12}{\theta }-3\\ =&12\frac{\ln \left[ 1+\theta \right] }{\theta ^3\left( 1+\theta \right) }\bigl [ Ei\left( 4\ln \left[ 1+\theta \right] \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) -Ei\left( \ln \left[ \left( 1+\theta \right) ^2\right] \right) \\&+li\left( 1+\theta \right) \bigl ]-\frac{12}{\theta }-3\\ =&12\frac{\ln \left[ 1+\theta \right] }{\theta ^3\left( 1+\theta \right) }\left[ Ei\left( 4\ln \left[ 1+\theta \right] \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) +li\left( 1+\theta \right) \right] \\&-\frac{12}{\theta }-3\\ =&12\frac{\ln \left[ 1+\theta \right] }{\theta ^3\left( 1+\theta \right) }\left[ Ei\left( 4\ln \left[ 1+\theta \right] \right) -2 Ei\left( 2\ln \left[ 1+\theta \right] \right) +li\left( 1+\theta \right) \right] -\frac{12}{\theta }-3. \end{aligned}$$

\(\square \)

1.4 Proof of Theorem 5

As our copula belongs to the Archimedean class, we will use the following formula to derive Kendall’s tau correlation coefficient

$$\begin{aligned} \tau _{C_T}=&1+4\int _{0}^{1}\frac{\psi _\theta (s)\ln \left[ \psi _\theta (s)\right] }{\psi _\theta ^{\prime }(s)}ds =1+4\int _{0}^{1}\frac{\left( 1+\theta s\right) \ln \left[ 1+\theta s\right] }{\theta }\ln \left[ \frac{\ln \left[ 1+\theta s\right] }{\ln \left[ 1+\theta \right] }\right] ds \end{aligned}$$

By setting \(t=\frac{\ln \left[ 1+\theta s\right] }{\ln \left[ 1+\theta \right] }\), we get

$$\begin{aligned} \tau _{C_T}=&1+4\ln ^2\left[ 1+\theta \right] \int _{0}^{1}\frac{e^{2\ln \left[ 1+\theta \right] t}t\ln \left[ t\right] }{\theta ^2}dt\\ =&1+\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\int _{0}^{1}\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] t^n}{n!}t\ln \left[ t\right] dt\\ =&1+\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{n!}\int _{0}^{1}t^{n+1}\ln \left[ t\right] dt\\ =&1+\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{n!}\left[ \frac{t^{n+2}}{n+2}\ln \left[ t\right] |_{0}^{1}-\int _{0}^{1}\frac{t^{n+1}}{n+2}dt\right] \\ =&1+\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{n!}\left[ -\frac{t^{n+2}}{(n+2)^2}|_{0}^{1}\right] \\ =&1-\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{(n+2)^2 n!}\\ =&1-\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\frac{n+1}{n+2}\frac{2^n\ln ^n\left[ 1+\theta \right] }{(n+2)!}\\ =&1-\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\sum _{n=0}^{\infty }\left[ 1-\frac{1}{n+2}\right] \frac{2^n\ln ^n\left[ 1+\theta \right] }{(n+2)!}\\ =&1-\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\left[ \sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{(n+2)!}-\sum _{n=0}^{\infty }\frac{2^n\ln ^n\left[ 1+\theta \right] }{(n+2)(n+2)!}\right] \\ =&1-\frac{4\ln ^2\left[ 1+\theta \right] }{\theta ^2}\left[ \sum _{m=2}^{\infty }\frac{2^{m-2}\ln ^{m-2}\left[ 1+\theta \right] }{m!}-\sum _{m=2}^{\infty }\frac{2^{m-2}\ln ^{m-2}\left[ 1+\theta \right] }{mm!}\right] \\ =&1-\frac{1}{\theta ^2}\left[ \sum _{m=2}^{\infty }\frac{2^{m}\ln ^{m}\left[ 1+\theta \right] }{m!}-\sum _{m=2}^{\infty }\frac{2^{m}\ln ^{m}\left[ 1+\theta \right] }{mm!}\right] \\ =&1-\frac{1}{\theta ^2}\left[ e^{2\ln \left[ 1+\theta \right] }-2\ln \left[ 1+\theta \right] -1-\sum _{m=1}^{\infty }\frac{2^{m}\ln ^{m}\left[ 1+\theta \right] }{mm!}+2\ln \left[ 1+\theta \right] \right] \\ =&1-\frac{1}{\theta ^2}\left[ \left( 1+\theta \right) ^2-1-\sum _{m=1}^{\infty }\frac{\left( 2\ln \left[ 1+\theta \right] \right) ^m}{mm!}\right] \\ =&1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -\sum _{m=1}^{\infty }\frac{\left( 2\ln \left[ 1+\theta \right] \right) ^m}{mm!}\right] \\ =&{\left\{ \begin{array}{ll} 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -\sum _{m=1}^{\infty }\frac{\left( 2\ln \left[ 1+\theta \right] \right) ^m}{mm!}\right] ;\theta \ge 0\\ 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) +\sum _{m=1}^{\infty }\frac{(-1)^{m+1}\left( -2\ln \left[ 1+\theta \right] \right) ^m}{mm!}\right] ;-0.63\le \theta<0 \end{array}\right. }\\ =&{\left\{ \begin{array}{ll} 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) \right] +\gamma +\ln \left[ 2\ln \left[ 1+\theta \right] \right] ;\theta \ge 0\\ 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) +\gamma +\ln \left[ -2\ln \left[ 1+\theta \right] \right] \right] ;-0.63\le \theta<0 \end{array}\right. }\\ =&{\left\{ \begin{array}{ll} 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) +\ln \left[ \ln \left[ 1+\theta \right] \right] +\gamma +\ln \left[ 2\right] \right] ;\theta \ge 0\\ 1-\frac{1}{\theta ^2}\left[ \theta \left( 2+\theta \right) -Ei\left( 2\ln \left[ 1+\theta \right] \right) +\ln \left[ -\ln \left[ 1+\theta \right] \right] +\gamma +\ln \left[ 2\right] \right] ;\\ \qquad -0.63\le \theta <0 \end{array}\right. } \end{aligned}$$

\(\square \)

1.5 Proof of Theorem 6

The upper tail dependence is given by

$$\begin{aligned} \uplambda _U=2-\lim _{t\rightarrow 1^{-}}\frac{1-\frac{e^{\frac{\ln ^{2}\left[ 1+\theta t\right] }{\ln \left[ 1+\theta \right] }}-1}{\theta }}{1-t}. \end{aligned}$$

Using L’Hôpital’s rule, we get

$$\begin{aligned} \uplambda _U=2-\lim _{t\rightarrow 1^{-}}\frac{2\ln \left[ 1+\theta t\right] }{\left( 1+\theta t\right) \ln \left[ 1+\theta \right] }e^{\frac{\ln ^{2}\left[ 1+\theta t\right] }{\ln \left[ 1+\theta \right] }}=2-2=0. \end{aligned}$$

Also, the lower tail dependence is given by

$$\begin{aligned} \uplambda _L=\lim _{t\rightarrow 0^{+}}\frac{e^{\frac{\ln ^{2}\left[ 1+\theta t\right] }{\ln \left[ 1+\theta \right] }}-1}{\theta t}. \end{aligned}$$

Using L’Hôpital’s rule, we get

$$\begin{aligned} \uplambda _L=\lim _{t\rightarrow 0^{+}}\frac{2\ln \left[ 1+\theta t\right] }{\left( 1+\theta t\right) \ln \left[ 1+\theta \right] }e^{\frac{\ln ^{2}\left[ 1+\theta t\right] }{\ln \left[ 1+\theta \right] }}=0. \end{aligned}$$

\(\square \)

1.6 Proof of Theorem 7

An Archimedean copula could be generalized to the multivariate case if the inverse of its Archimedean additive generator is completely monotone (see Nelsen [50], Theorem 4.6.2). The inverse of the additive generator of the truncated-Poisson copula takes the form \(\phi _{\theta }^{-1}(t)=\psi _{\theta }^{-1}\left( e^{-t}\right) =\frac{e^{e^{-t}\ln \left[ 1+\theta \right] }-1}{\theta }\). As the function \(f_1\left( t\right) =e^{-t}\) is completely monotone and \(f_2\left( t\right) =\frac{e^{t\ln \left[ 1+\theta \right] }-1}{\theta }\) is absolutely monotone for \(\theta \ge 0\). Then, we have \(f_2\circ f_1=\phi _{\theta }^{-1}\left( t\right) \) is completely monotone, which completes the proof.

Applications’ Datasets

Table 7 Kidney Infection Data
Table 8 Aircrafts Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzaid, A.A., Alhadlaq, W.M. A New Family of Archimedean Copulas: The Truncated-Poisson Family of Copulas. Bull. Malays. Math. Sci. Soc. 45 (Suppl 1), 477–504 (2022). https://doi.org/10.1007/s40840-022-01333-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-022-01333-w

Keywords

Mathematics Subject Classification

Navigation