Skip to main content
Log in

Absolute continuous bivariate generalized exponential distribution

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Generalized exponential distribution has been used quite effectively to model positively skewed lifetime data as an alternative to the well known Weibull or gamma distributions. In this paper we introduce an absolute continuous bivariate generalized exponential distribution by using a simple transformation from a well known bivariate exchangeable distribution. The marginal distributions of the proposed bivariate generalized exponential distributions are generalized exponential distributions. The joint probability density function and the joint cumulative distribution function can be expressed in closed forms. It is observed that the proposed bivariate distribution can be obtained using Clayton copula with generalized exponential distribution as marginals. We derive different properties of this new distribution. It is a five-parameter distribution, and the maximum likelihood estimators of the unknown parameters cannot be obtained in closed forms. We propose some alternative estimators, which can be obtained quite easily, and they can be used as initial guesses to compute the maximum likelihood estimates. One data set has been analyzed for illustrative purposes. Finally we propose some generalization of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandyopadhyay, D., Basu, A.P.: On a generalization of a model by Lindley and Singpurwalla. Adv. Appl. Probab. 22, 498–500 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Basu, A.P.: Bivariate failure rate. J. Am. Stat. Assoc. 66, 103–104 (1971)

    Article  MATH  Google Scholar 

  • Blomqvist, N.: On a measure of dependence between two random variables. Ann. Math. Stat. 21, 593–600 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  • Coles, S., Hefferman, J., Tawn, J.: Dependence measures for extreme value analysis. Extremes 2, 339–365 (1999)

    Article  MATH  Google Scholar 

  • Domma, F.: Some properties of the bivariate Burr type III distribution. Statistics (2009, to appear). doi:10.1080/02331880902986547

  • Gupta, R.D., Kundu, D.: Generalized exponential distribution. Aust. N. Z. J. Stat. 41, 173–188 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.D., Kundu, D.: Generalized exponential distribution; existing methods and some recent developments. J. Stat. Plan. Inference 137, 3537–3547 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gupta, R.C., Gupta, P.L., Gupta, R.D.: Modeling failure time data by Lehmann alternatives. Commun. Stat., Theory Methods 27, 887–904 (1998)

    Article  MATH  Google Scholar 

  • Joe, H.: Multivariate Model and Dependence Concept. Chapman & Hall, London (1997)

    Google Scholar 

  • Johnson, N.L., Kotz, S.: A vector multivariate hazard rate. J. Multivariate Anal. 5, 53–66 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis, 3rd edn. Prentice Hall, New York (1992)

    MATH  Google Scholar 

  • Kannan, N., Kundu, D., Nair, P., Tripathi, R.C.: The generalized exponential cure rate model with covariates. J. Appl. Stat. 37, 1625–1636 (2010)

    Article  Google Scholar 

  • Karlin, S.: Total Positivity. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  • Lehmann, E.L.: The power of rank test. Ann. Math. Stat. 24, 23–42 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  • Lindley, D.V., Singpurwalla, N.D.: Multivariate distributions for the life lengths of a system sharing a common environment. J. Appl. Probab. 23, 418–431 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Mardia, K.V.: Multivariate Pareto distributions. Ann. Math. Stat. 33, 1008–1015 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  • Marshall, A.W.: Some comments on hazard gradient. Stochastic Process. Appl. 3, 293–300 (1975)

    Article  MATH  Google Scholar 

  • Mudholkar, G.S., Srivastava, D.K., Freimer, M.: The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37, 436–445 (1995)

    Article  MATH  Google Scholar 

  • Nayak, T.: Multivariate Lomax distribution: Properties and usefulness in reliability theory. J. Appl. Probab. 24, 170–177 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  • Sankaran, P.G., Nair, N.U.: A bivariate Pareto model and its applications to reliability. Naval Res. Logist. 40, 1013–1020 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Shawky, A.I., Abu-Zinadah, H.H.: Characterizations of the exponentiated Pareto distribution based on record values. Appl. Math. Sci. 2, 1283–1290 (2008)

    MATH  MathSciNet  Google Scholar 

  • Surles, J.G., Padgett, W.J.: Inference for reliability and stress-strength for a scaled Burr Type X distribution. Lifetime Data Anal. 7, 187–200 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, D., Gupta, R.D. Absolute continuous bivariate generalized exponential distribution. AStA Adv Stat Anal 95, 169–185 (2011). https://doi.org/10.1007/s10182-010-0151-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-010-0151-0

Keywords

Navigation