Skip to main content
Log in

Optimal Time-Decay Estimates in the Critical Framework for a Chemotaxis Model

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

In this paper, we investigate the Cauchy problem of a multidimensional hyperbolic–parabolic system which derived from the Keller–Segel model describing chemotaxis in the critical Besov spaces with initial data close to a constant equilibrium state. The time-decay estimates of global strong solutions are established in more general \(L^{p}\) framework comparing with Xu et al. (J Math Phys 60:091509, 2019) and Xu and Li (Commun Contemp Math, 2021. https://doi.org/10.1142/S0219199721500784), and a new regularity assumption is proposed that the low frequencies have more freedom. The proof mainly depends on tricky and non-classical Besov product estimates about various Sobolev embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that for technical reasons, we need a small overlap between low and high frequencies.

References

  1. Xu, F.Y., Li, X.L., Wang, C.L.: The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis. J. Math. Phys. 60, 091509 (2019)

    Article  MathSciNet  Google Scholar 

  2. Xu, F.Y., Li, X.L.: On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis. Commun. Contemp. Math. (2021). https://doi.org/10.1142/S0219199721500784

  3. Keller, E., Segel, L.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  4. Keller, E., Segel, L.: Model for chemotaxis. J. Theor. Biol. 30(2), 225–234 (1971)

    Article  Google Scholar 

  5. Keller, E., Segel, L.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30(2), 235–248 (1971)

    Article  Google Scholar 

  6. Li, T., Pan, R.H., Zhao, K.: Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J. Math. Anal. 72(1), 417–443 (2012)

    Article  MathSciNet  Google Scholar 

  7. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: I. Jahresber. Deutsch. Math. Verein 105(3), 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Zeng, Y., Zhao, K.: On the logarithmic Keller-Segel-Fisher/KPP system. Discrete Contin. Dyn. Syst., Ser. A 39(9), 5365–5402 (2019)

    Article  MathSciNet  Google Scholar 

  9. Zeng, Y., Zhao, K.: Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate. J. Diff. Equations 268(4), 1379–1411 (2020)

    Article  MathSciNet  Google Scholar 

  10. Othmer, H., Stevens, A.: Aggregation, blowup and collapse: the ABC‘s of taxis in reinforced random walks. SIAM J. Appl. Math. 57(4), 1044–1081 (1997)

    Article  MathSciNet  Google Scholar 

  11. Levine, H., Sleeman, B.: A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57(3), 683–730 (1997)

    Article  MathSciNet  Google Scholar 

  12. Zhang, M., Zhu, C.J.: Global existence of solutions to a hyperbolic-parabolic system. Proc. Am. Math. Soc. 135(4), 1017–1027 (2007)

    Article  MathSciNet  Google Scholar 

  13. Li, T., Pan, R.H., Zhao, K.: Quantitative decay of a one-dimensional hybrid chemotaxis model with large data. Nonlinearity 28(7), 2181–2210 (2015)

    Article  MathSciNet  Google Scholar 

  14. Fan, J., Zhao, K.: Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis. J. Math. Anal. Appl. 394(2), 687–695 (2012)

    Article  MathSciNet  Google Scholar 

  15. Li, D., Li, T., Zhao, K.: On a hyperbolic-parabolic system modeling chemotaxis. Math. Models Methods Appl. Sci. 21(8), 1631–1650 (2011)

    Article  MathSciNet  Google Scholar 

  16. Xie, W.J., Zhang, Y.H., Xiao, Y.D., Wei, W.: Global existence and convergence rates for the strong solutions in \({H}^{2}\) to the 3D Chemotaxis Model. J. Appl. Math. 2013, 391056 (2013)

    MATH  Google Scholar 

  17. Mei, M., Peng, H., W, Z.A.: Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis. J. Diff. Equ. 259(10), 5168–5191 (2015)

    Article  MathSciNet  Google Scholar 

  18. Li, H., Zhao, K.: Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J. Diff. Equ. 258(2), 302–338 (2015)

    Article  MathSciNet  Google Scholar 

  19. Li, L., Wang, Z.A.: Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Math. Models Methods Appl. Sci. 20(11), 1967–1998 (2010)

    Article  MathSciNet  Google Scholar 

  20. Li, T., Wang, Z.A.: Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J. Diff. Equ. 250(3), 1310–1333 (2011)

    Article  MathSciNet  Google Scholar 

  21. Li, J.Y., Wang, L.N., J., Z.K.: Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Math. Methods. Appl. Sci. 36(14), 1862–1877 (2013)

  22. Hao, C.C.: Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces. Z. Angew. Math. Phys. 63, 825–834 (2012)

    Article  MathSciNet  Google Scholar 

  23. Deng, C., Li, T.: Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework. J. Diff. Equ. 257(5), 1311–1332 (2014)

    Article  MathSciNet  Google Scholar 

  24. Shi, W.X., Xu, J.: The large-time behavior of solutions in the critical \({L}^{p}\) framework for compressible viscous and heat-conductive gas flows. J. Math. Phys. 61, 061516 (2020)

    Article  MathSciNet  Google Scholar 

  25. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

  26. Chemin, J.Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Diff. Equ. 121, 314–328 (1995)

    Article  Google Scholar 

  27. Chemin, J.Y.: Théorèmes d’unicité pour le systèm de Navier-Stokes tridimensionnel. J. Amal. Math. 77(1), 27–50 (1999)

    MATH  Google Scholar 

  28. Shi, W.X., Xu, J.: A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical \({L}^{p}\) framework. J. Diff. Equ. 266(10), 6426–6458 (2019)

    Article  Google Scholar 

  29. Danchin, R., Xu, J.: Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical \({L}^{p}\) framework. Arch. Rational Mech. Anal. 224(1), 53–90 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (12101263) and the Fundamental Research Funds for the Central Universities (JUSRP121047). The third author is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJD100001). Last but not least, he is very grateful to Professor J. Xu for the suggestion on this question. There are no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang.

Additional information

Communicated by Yong Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Zhang, J. & Xie, M. Optimal Time-Decay Estimates in the Critical Framework for a Chemotaxis Model. Bull. Malays. Math. Sci. Soc. 45, 1003–1026 (2022). https://doi.org/10.1007/s40840-021-01240-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01240-6

Keywords

Mathematics Subject Classification

Navigation