Skip to main content
Log in

Hardy–Littlewood–Sobolev-Type Inequality for the Fractional Littlewood–Paley g-Function in Jacobi Analysis

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

We introduce the fractional Littlewood–Paley g-function of order \(s, ~~s>0\), noted \(g_{s}^{\alpha ,\beta }\), associated with the Jacobi operator \(\Delta _{\alpha ,\beta }\) on \((0, \infty \)) as the operator

$$\begin{aligned}g_{s}^{\alpha , \beta }(f)(x)=\left( \int _{0}^{\infty }t^{2s+1}|\frac{\partial u_{\alpha , \beta }(f)}{\partial t}(x,t)|^{2}dt\right) ^{\frac{1}{2}}, \end{aligned}$$

where \( u_{\alpha , \beta }(f)\) is the Poisson integral defined by \(u_{\alpha , \beta }(f)= P_{t}^{\alpha , \beta }*_{\alpha , \beta }f\) (\( *_{\alpha , \beta }\) being the convolution in the Jacobi setting). We establish the following Hardy–Littlewood–Sobolev-type inequality: For \(0<s<2(\alpha +1),~~1<p<\frac{2(\alpha +1)}{s}\) and \(\frac{1}{q}=\frac{1}{p}-\frac{s}{2(\alpha +1)}\), there exists a constant \(C_{\alpha , s, p}\) such that for all \(f \in L^{p}([0,+\infty [,d\mu _{\alpha ,\beta })\),

$$\begin{aligned} \Vert g_{s}^{\alpha ,\beta }f\Vert _{q,\mu }\le C_{\alpha , s, p} \Vert f\Vert _{p,\mu }. \end{aligned}$$

Next, if \(p=1\), \(0<s<2(\alpha +1)\) and \(q=\frac{\alpha +1}{2(\alpha +1)-s}\), we prove that the operator \(g_{s}^{\alpha ,\beta }\) is of weak type (1, q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astengo, F., Di Blasio, B.: Dynamics of the heat semigroup in Jacobi analysis. J. Math. Anal. Appl. 391(1), 48–56 (2012)

    Article  MathSciNet  Google Scholar 

  2. Ben Salem, N., Dachraoui, A.: Pseudo-differential operators associated with the Jacobi differential operator. J. Math. Anal. Appl. 220(1), 365–381 (1998)

    Article  MathSciNet  Google Scholar 

  3. Ben Salem, N., Dachraoui, A.: Sobolev type spaces associated with Jacobi differential operators. Integral Transforms Spec. Funct. 9(3), 163–184 (2000)

    Article  MathSciNet  Google Scholar 

  4. Ben Salem, N., Samaali, T.: Hilbert transform and related topics associated with the differential Jacobi operator on (0,+8). Positivity 15(2), 221–240 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bloom, W.R., Xu, Z.: Fourier multipliers for Lp on Chébli-Trimèche hypergroups. Proc. Lond. Math. Soc. 80(3), 643–664 (2000)

    Article  Google Scholar 

  6. Kawazoe, T., Liu, J.: Heat kernel and Hardy’s theorem for Jacobi transform. Chin. Ann. Math. Ser. B 24(3), 359–366 (2003)

    Article  MathSciNet  Google Scholar 

  7. Kawazoe, T.: H1-estimates of Littlewood-Paley and Lusin functions for Jacobi analysis. Anal. Theory Appl. 25(3), 201–229 (2009)

    Article  MathSciNet  Google Scholar 

  8. Koornwinder, T. H.: Jacobi functions and analysis on noncompact semi-simple Lie groups. Special Functions : Group Theoretical Aspects and Applications. (R.A. Askey, T.H. Koornwinder and W. Schempp, eds.) Reidel, Dordrecht, 1984, pp. 1–85.

  9. Stein, E. M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290

  10. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of Mathematics Studies. Princeton University Press, Princeton (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Néjib Ben Salem.

Additional information

Communicated by See Keong Lee.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Salem, N. Hardy–Littlewood–Sobolev-Type Inequality for the Fractional Littlewood–Paley g-Function in Jacobi Analysis. Bull. Malays. Math. Sci. Soc. 44, 4439–4452 (2021). https://doi.org/10.1007/s40840-021-01181-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01181-0

Keywords

Mathematics Subject Classification

Navigation