Skip to main content
Log in

A Characterization of Two-Weight Norm Inequality for Littlewood–Paley \(g_{\lambda }^{*}\)-Function

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \(n\ge 2\) and \(g_{\lambda }^{*}\) be the well-known high-dimensional Littlewood–Paley function which was defined and studied by E. M. Stein,

$$\begin{aligned} g_{\lambda }^{*}(f)(x) =\bigg (\iint _{\mathbb {R}^{n+1}_{+}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda } |\nabla P_tf(y,t)|^2 \frac{\mathrm{d}y \mathrm{d}t}{t^{n-1}}\bigg )^{1/2}, \ \quad \lambda > 1, \end{aligned}$$

where \(P_tf(y,t)=p_t*f(y)\), \(p_t(y)=t^{-n}p(y/t)\), and \(p(x) = (1+|x|^2)^{-(n+1)/2}\), \(\nabla =(\frac{\partial }{\partial y_1},\ldots ,\frac{\partial }{\partial y_n},\frac{\partial }{\partial t})\). In this paper, we give a characterization of two-weight norm inequality for \(g_{\lambda }^{*}\)-function. We show that \(\big \Vert g_{\lambda }^{*}(f \sigma ) \big \Vert _{L^2(w)} \lesssim \big \Vert f \big \Vert _{L^2(\sigma )}\) if and only if the two-weight Muckenhoupt \(A_2\) condition holds, and a testing condition holds:

$$\begin{aligned} \sup _{Q : \text {cubes}~\mathrm{in} \ {\mathbb {R}^n}} \frac{1}{\sigma (Q)} \int _{{\mathbb {R}^n}} \iint _{\widehat{Q}} \Big (\frac{t}{t+|x-y|}\Big )^{n\lambda }|\nabla P_t(\mathbf {1}_Q \sigma )(y,t)|^2 \frac{w \mathrm{d}x \mathrm{d}t}{t^{n-1}} \mathrm{d}y < \infty , \end{aligned}$$

where \(\widehat{Q}\) is the Carleson box over Q and \((w, \sigma )\) is a pair of weights. We actually prove this characterization for \(g_{\lambda }^{*}\)-function associated with more general fractional Poisson kernel \(p^\alpha (x) = (1+|x|^2)^{-{(n+\alpha )}/{2}}\). Moreover, the corresponding results for intrinsic \(g_{\lambda }^*\)-function are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta. Math. 124, 9–36 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hytönen, T.: The sharp weighted bound for general Calderon-Zygmund operators. Ann. Math. 175(3), 1473–1506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lacey, M.T.: The two weight inequality for the Hilbert transform: a primer, submitted (2013). http://www.arxiv.org/abs/1304.5004

  4. Lacey, M.T.: Two weight inequality for the Hilbert transform: a real variable characterization, II. Duke Math. J. 163(15), 2821–2840 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lacey, M.T., Li, K.: Two weight norm inequalities for \(g\) function. Math. Res. Lett. 21(03), 521–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lacey, M.T., Martikainen, H.: Local Tb theorem with \(L^2\) testing conditions and general measures: square functions, J. Anal. Math. http://www.arxiv.org/abs/1308.4571

  7. Lacey, M.T., Sawyer, E.T., Uriarte-Tuero, I.: A two weight inequality for the Hilbert transform assuming an energy hypothesis. J. Funct. Anal. 263, 305–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Littlewood, J., Paley, R.: Theorems on Fourier series and power series, II. Proc. Lond. Math. Soc. 42, 52–89 (1936)

    MathSciNet  MATH  Google Scholar 

  9. Lacey, M.T., Sawyer, E.T., Uriarte-Tuero, I., Shen, C.-Y.: Two weight inequality for the Hilbert transform: a real variable characterization, I. Duke Math. J. 163(15), 2795–2820 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martikainen, H., Mourgoglou, M.: Square functions with general measures. Proc. Amer. Math. Soc. 142, 3923–3931 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sawyer, E.: A characterization of a two weight norm inequality for maximal operators. Studia Math. 75, 1–11 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stein, E.M.: On some function of Littlewood-Paley and Zygmund. Bull. Amer. Math. Soc. 67, 99–101 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  15. Wilson, M.: Weighted Littlewood-Paley theory and exponential-square integrability, Lecture Notes in Mathematics, 1924. Springer, New York (2008)

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the referee for his or her valuable remarks and suggestions which made this paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingying Xue.

Additional information

M. Cao and Q. Xue were supported by NSFC (No. 11471041 and 11671039), the Fundamental Research Funds for the Central Universities (No. 2014KJJCA10) and NCET-13-0065. K. Li was supported by the Basque Government through the BERC 2014-2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Li, K. & Xue, Q. A Characterization of Two-Weight Norm Inequality for Littlewood–Paley \(g_{\lambda }^{*}\)-Function. J Geom Anal 28, 842–865 (2018). https://doi.org/10.1007/s12220-017-9844-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-017-9844-x

Keywords

Mathematics Subject Classification

Navigation