Skip to main content
Log in

On the Commuting Graph of Semidihedral Group

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

The commuting graph \(\varDelta (G)\) of a finite non-abelian group G is a simple graph with vertex set G, and two distinct vertices xy are adjacent if \(xy = yx\). In this paper, first we discuss some properties of \(\varDelta (G)\). We determine the edge connectivity and the minimum degree of \(\varDelta (G)\) and prove that both are equal. Then, other graph invariants, namely: matching number, clique number, boundary vertex, of \(\varDelta (G)\) are studied. Also, we give necessary and sufficient condition on the group G such that the interior and center of \(\varDelta (G)\) are equal. Further, we investigate the commuting graph of the semidihedral group \(SD_{8n}\). In this connection, we discuss various graph invariants of \(\varDelta (SD_{8n})\) including vertex connectivity, independence number, matching number and detour properties. We also obtain the Laplacian spectrum, metric dimension and resolving polynomial of \(\varDelta (SD_{8n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, F., Li, Y.: The connectivity and the spectral radius of commuting graphs on certain finite groups. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1700893

    Article  Google Scholar 

  2. Ali, F., Salman, M., Huang, S.: On the commuting graph of dihedral group. Commun. Algebra 44(6), 2389–2401 (2016)

    Article  MathSciNet  Google Scholar 

  3. Araújo, J., Bentz, W., Konieczny, J.: The commuting graph of the symmetric inverse semigroup. Isr. J. Math. 207(1), 103–149 (2015)

    Article  MathSciNet  Google Scholar 

  4. Araújo, J., Kinyon, M., Konieczny, J.: Minimal paths in the commuting graphs of semigroups. Eur. J. Combin. 32(2), 178–197 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ashrafi, A.R., Gholami, A., Mehranian, Z.: Automorphism group of certain power graphs of finite groups. Electr. J. Graph Theory Appl. 5(1), 70–82 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bondy, J.A., Murty, U.S.R., et al.: Graph Theory with Applications. Elsevier, New York (1976)

    Book  Google Scholar 

  7. Brauer, R., Fowler, K.A.: On groups of even order. Ann. Math. (2) 62(3), 565–583 (1955)

  8. Brauer, R., Fowler, K.A.: The Laplacian spectrum of graphs. Graph Theory Combin. Appl. 2, 871–898 (1991)

    MathSciNet  Google Scholar 

  9. Bundy, D.: The connectivity of commuting graphs. J. Comb. Theory 113(6), 995–1007 (2006)

    Article  MathSciNet  Google Scholar 

  10. Cameron, P.J., Van Lint, J.H.: Designs, Graphs, Codes and Their Links. London Mathematical Society Student Texts 22. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  11. Chartrand, G., Johns, G.L., Tian, S.L.: Detour distance in graphs. Ann. Discrete Math. 55, 127–136 (1993)

    Article  MathSciNet  Google Scholar 

  12. Chartrand, G., Zhang, P.: Introduction to Graph Theory. McGraw-Hill, New York (2004)

    MATH  Google Scholar 

  13. Chartrand, G., Eroha, L., Johnsonb, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  14. Chattopadhyay, S., Patra, K.L., Sahoo, B.K.: Laplacian eigenvalues of the zero divisor graph of the ring \(\mathbb{Z}_n\). Linear Algebra Appl. 584, 267–286 (2020)

    Article  MathSciNet  Google Scholar 

  15. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. (2) 164(1), 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  16. Cvetkovic, D., Simic, S., Rowlinson, P.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Dolžan, D., Kokol Bukovšek, D., Kuzma, B.: On diameter of components in commuting graphs. Linear Algebra Appl. 522, 161–174 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dolžan, D.: The metric dimension of the total graph of a finite commutative ring. Can. Math. Bull. 59(4), 748–759 (2016)

    Article  MathSciNet  Google Scholar 

  19. Dutta, J., Kanti Nath, R.: Spectrum of commuting graphs of some classes of finite groups. Matematika 33(1), 87–95 (2017)

    Article  MathSciNet  Google Scholar 

  20. Feng, M., Ma, X., Wang, K.: The structure and metric dimension of the power graph of a finite group. Eur. J. Combin. 43, 82–97 (2015)

    Article  MathSciNet  Google Scholar 

  21. Harary, F., Melter, A.R.: On the metric dimension of a graph. ARS Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph theory for metric dimension and diameter. Electron. J. Combin. 17(1), \(\#\) R30 (2010)

  23. Hungerford, T.W.: Algebra. Springer, New York (1974)

    MATH  Google Scholar 

  24. Iranmanesh, A., Jafarzadeh, A.: On the commuting graph associated with the symmetric and alternating groups. J. Algebra Appl. 7(1), 129–146 (2008)

    Article  MathSciNet  Google Scholar 

  25. Kakkar, V., Rawat, G.: Commuting graphs of generalized dihedral groups. Discrete Math. Algorithms Appl. 11(02), 1950024 (2018)

    Article  MathSciNet  Google Scholar 

  26. Kelarev, A.: Graph Algebras and Automata. Marcel Dekker, New York (2003)

    Book  Google Scholar 

  27. Kelarev, A.V.: Labelled Cayley graphs and minimal automata. Australas. J. Combin. 30, 95–101 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Khuller, S., Raghavachari, B., Rosenfeld, A.: Localization in graphs. Technical. Technical Report CS-TR-3326, University of Maryland at College Park (1994)

  29. Ma, X., Feng, M., Wang, K.: The strong metric dimension of the power graph of a finite group. Discrete Appl. Math. 239, 159–164 (2018)

    Article  MathSciNet  Google Scholar 

  30. Ma, X., She, Y.: The metric dimension of the enhanced power graph of a finite group. J. Algebra Appl. 19(01), 2050020 (2020)

    Article  MathSciNet  Google Scholar 

  31. Mirzargar, M., Pach, P., Ashrafi, A.R.: Remarks on commuting graph of a finite group. Electron. Notes Discrete Math. 45, 103–106 (2014)

    Article  Google Scholar 

  32. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155(3), 356–364 (2007)

    Article  MathSciNet  Google Scholar 

  33. Panda, R.P., Dalal, S., Kumar, J.: On the enhanced power graph of finite groups. Commun. Algebra 49(4), 1697–1716 (2021)

    Article  MathSciNet  Google Scholar 

  34. Pezzott, J.C.M., Nakaoka, I.N.: On groups whose commuting graph on a transversal is strongly regular. Discrete Math. 342(12), 111626, 8 (2019)

  35. Rajkumar, R., Anitha, T.: Laplacian spectrum of reduced power graph of certain finite groups. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1636930

    Article  MATH  Google Scholar 

  36. Sebő, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2), 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  37. Segev, Y.: On finite homomorphic images of the multiplicative group of a division algebra. Ann. Math. (2) 149(1), 219–251 (1999)

    Article  MathSciNet  Google Scholar 

  38. Segev, Y.: The commuting graph of minimal nonsolvable groups. Geom. Dedic. 88(1), 55–66 (2001)

    Article  MathSciNet  Google Scholar 

  39. Segev, Y., Seitz, G.M.: Anisotropic groups of type \(\text{ A}_n\) and the commuting graph of finite simple groups. Pac. J. Math. 202(1), 125–225 (2002)

    Article  Google Scholar 

  40. Shitov, Y.: Distances on the commuting graph of the ring of real matrices. Mat. Zametki 103(5), 765–768 (2018)

    Article  MathSciNet  Google Scholar 

  41. Slater, J.P.: Leaves of trees. Congr. Number 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  42. Tolue, B.: The twin non-commuting graph of a group. Rendiconti del Circolo Matematico di Palermo Series 2(69), 591–599 (2020)

    Article  MathSciNet  Google Scholar 

  43. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  44. Yi, E.: On strong metric dimension of graphs and their complements. Acta Math. Sin. (Engl. Ser.) 29(8), 1479–1492 (2013)

    Article  MathSciNet  Google Scholar 

  45. Zhou, B., Cai, X.: On detour index. MATCH Commun. Math. Comput. Chem. 63(1), 199–210 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions which lead to an improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Kumar.

Additional information

Communicated by Rosihan M. Ali.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jitender Kumar: Supported by “Science and Engineering Research Board of India under MATRICS Grant (MTR/2018/000779)”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Dalal, S. & Baghel, V. On the Commuting Graph of Semidihedral Group. Bull. Malays. Math. Sci. Soc. 44, 3319–3344 (2021). https://doi.org/10.1007/s40840-021-01111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-021-01111-0

Keywords

Mathematics Subject Classification

Navigation