Skip to main content
Log in

Collaborative Utilization Status of Red Mud and Phosphogypsum: A Review

  • Review Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Red mud and phosphogypsum are staple solid wastes, with considerably large annual emissions. Improving their comprehensive utilization is the key to addressing the large accretion of both red mud and phosphogypsum. They have great utilization potential and can be collectively modified to expand the utilization field and increase the utilization rate. Thus, based on the characteristics of red mud and phosphogypsum, this study summarizes the current status of their coutilization in the fields of building materials, agriculture, environmental protection, and transportation. The development of technologies for the bulk consumption and coproduction of high value-added products is an important direction for the coutilization of red mud and phosphogypsum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anawati J, Azimi G (2019) Recovery of scandium from Canadian bauxite residue utilizing acid baking followed by water leaching. Waste Manag 95(11):549–559. https://doi.org/10.1016/j.wasman.2019.06.044

    Article  CAS  Google Scholar 

  2. Lopes G, Guilherme LR, Costa ET, Curi N, Penha HG (2013) Increasing arsenic sorption on red mud by phosphogypsum addition. J Hazard Mater 262:1196–1203. https://doi.org/10.1016/j.jhazmat.2012.06.051

    Article  CAS  Google Scholar 

  3. Mukiza E, Liu XM, Zhang LL, Zhang N (2019) Preparation and characterization of a red mud-based road base material: strength formation mechanism and leaching characteristics. Constr Build Mater 220:297–307. https://doi.org/10.1016/j.conbuildmat.2019.06.027

    Article  CAS  Google Scholar 

  4. Taneez M, Hurel C (2019) A review on the potential uses of red mud as amendment for pollution control in environmental media. Environ Sci Pollut Res Int 26(22):22106–22125. https://doi.org/10.1007/s11356-019-05576-2

    Article  CAS  Google Scholar 

  5. Wu S, Yao X, Ren C, Yao Y, Wang W (2020) Recycling phosphogypsum as a sole calcium oxide source in calcium sulfoaluminate cement and its environmental effects. J Environ Manage 271:110986. https://doi.org/10.1016/j.jenvman.2020.110986

    Article  CAS  Google Scholar 

  6. Xue S, Ke W, Zhu F, Ye Y, Liu Z, Fan J et al (2020) Effect of phosphogypsum and poultry manure on aggregate-associated alkaline characteristics in bauxite residue. J Environ Manage 256:109981. https://doi.org/10.1016/j.jenvman.2019.109981

    Article  CAS  Google Scholar 

  7. Liu DY, Wu CH (2012) Stockpiling and comprehensive utilization of red mud research progress. Materials 5(7):1232–1246. https://doi.org/10.3390/ma5071232

    Article  CAS  Google Scholar 

  8. Tayibi H, Choura M, Lopez FA, Alguacil FJ, Lopez-Delgado, (2009) Environmental impact and management of phosphogypsum. J Environ Manag 90(8):2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007

    Article  CAS  Google Scholar 

  9. Canovas CR, Macias F, Perez-Lopez R, Basallote MD, Millan-Becerro R (2018) Valorization of wastes from the fertilizer industry: current status and future trends. J Clean Prod 174:678–690. https://doi.org/10.1016/j.jclepro.2017.10.293

    Article  CAS  Google Scholar 

  10. Ahmed MHM, Batalha N, Qiu TF, Mahmudul Hasan MD, Atanda LA, Amiralian N et al (2020) Red-mud based porous nanocatalysts for valorisation of municipal solid waste. J Hazard Mater 2020(396):122711. https://doi.org/10.1016/j.jhazmat.2020.122711

    Article  CAS  Google Scholar 

  11. Wang C, Zhang X, Sun R, Cao Y (2020) Neutralization of red mud using bio-acid generated by hydrothermal carbonization of waste biomass for potential soil application. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122525

    Article  Google Scholar 

  12. Panwar N, Chauhan A (2020) Study of friction force behaviour of red-mud based aluminium matrix composites under influence of various operating parameters. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.04.091

    Article  Google Scholar 

  13. Ajam L, El Haj B, Hassen RN (2019) Phosphogypsum utilization in fired bricks: radioactivity assessment and durability. J Build Eng 26:100928. https://doi.org/10.1016/j.jobe.2019.100928

    Article  Google Scholar 

  14. Amrani M, Taha Y, Kchikach A, Benzaazoua M, Hakkou R (2020) Phosphogypsum recycling: new horizons for a more sustainable road material application. J Build Eng 30:101267. https://doi.org/10.1016/j.jobe.2020.101267

    Article  Google Scholar 

  15. Mashifana TP (2019) Chemical treatment of phosphogypsum and its potential application for building and construction. Procedia Manufacturing 35:641–648. https://doi.org/10.1016/j.promfg.2019.06.007

    Article  Google Scholar 

  16. Rosales J, Pérez SM, Cabrera M, Gázquez MJ, Bolivar JP, de Brito J et al (2020) Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. J Clean Prod 244:118752. https://doi.org/10.1016/j.jclepro.2019.118752

    Article  CAS  Google Scholar 

  17. Samal S, Ray AK, Bandopadhyay A (2013) Proposal for resources, utilization and processes of red mud in India — A review. Int J Miner Process 118:43–55. https://doi.org/10.1016/j.minpro.2012.11.001

    Article  CAS  Google Scholar 

  18. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition recycling and utilisation of Bayer red mud. Resour Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  19. Higgins D, Curtin T, Burke I, Courtney R (2018) The potential for constructed wetland mechanisms to treat alkaline bauxite residue leachate: carbonation and precipitate characterisation. Environ Sci Pollut Res 25(29):29451–29458. https://doi.org/10.1007/s11356-018-2983-1

    Article  CAS  Google Scholar 

  20. Li Y, Haynes RJ, Chandrawana I, Zhou YF (2019) Growth of Rhodes grass and leaching of ions from seawater neutralized bauxite residues after amendment with gypsum and organic wastes. J Environ Manage 231:596–604. https://doi.org/10.1016/j.jenvman.2018.10.083

    Article  CAS  Google Scholar 

  21. Santini TC, Peng YG (2017) Microbial fermentation of organic carbon substrates drives rapid pH neutralization and element removal in bauxite residue leachate. Environ Sci Technol 51(21):12592–12601. https://doi.org/10.1021/acs.est.7b02844

    Article  CAS  Google Scholar 

  22. Liu Z, Li H (2015) Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 155:29–43. https://doi.org/10.1016/j.hydromet.2015.03.018

    Article  CAS  Google Scholar 

  23. Wang SH, Jin HX, Deng Y (2021) Xiao YD (2021) Comprehensive utilization status of red mud in China: A critical review. J Clean Prod 289(20):125136. https://doi.org/10.1016/j.jclepro.2020.125136

    Article  CAS  Google Scholar 

  24. Reddy PS, Reddy NG, Serjun VZ, Mohanty B, Das SK, Reddy KR et al (2020) Properties and assessment of applications of red mud (Bauxite Residue): current status and research needs. Waste and Biomass Valorization 12:1185–1217. https://doi.org/10.1007/s12649-020-01089-z

    Article  CAS  Google Scholar 

  25. Gao C, Yang G, Wang D, Gong Z, Zhang X, Wang B et al (2020) Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: impact mechanism of cerium precursors on surface physicochemical properties. Chemosphere 257:127215. https://doi.org/10.1016/j.chemosphere.2020.127215

    Article  CAS  Google Scholar 

  26. Qi L, Sun Z, Tang Q, Wang J, Huang T, Sun C et al (2020) Getting insight into the effect of CuO on red mud for the selective catalytic reduction of NO by NH3. J Hazard Mater 396:122459. https://doi.org/10.1016/j.jhazmat.2020.122459

    Article  CAS  Google Scholar 

  27. Santona L, Castaldi P, Melis P (2016) Evaluation of the interaction mechanisms between red muds and heavy metals. J Hazard Mater 136(2):324–329. https://doi.org/10.1016/j.jhazmat.2005.12.022

    Article  CAS  Google Scholar 

  28. Altundoğan HS, Altundoğan S, Tümen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22(3):357–363. https://doi.org/10.1016/S0956-053X(01)00041-1

    Article  Google Scholar 

  29. Singh M, Upadhayay SN, Prasad PM (1997) Preparation of iron rich cements using red mud. Cem Concr Res 27(7):1037–1046. https://doi.org/10.1016/S0008-8846(97)00101-4

    Article  CAS  Google Scholar 

  30. Lachehab A, Mertah O, Kherbeche A, Hassoune H (2020) Utilization of phosphogypsum in CO2 mineral sequestration by producing potassium sulphate and calcium carbonate. Mater Sci Energy Technol 3:611–625. https://doi.org/10.1016/j.mset.2020.06.005

    Article  CAS  Google Scholar 

  31. Lütke SF, Oliveira MLS, Silva LFO, Cadaval TRS, Dotto GL (2019) Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere 256:127138. https://doi.org/10.1016/j.chemosphere.2020.127138

    Article  CAS  Google Scholar 

  32. Ning TJ (2011) Effect of wet-process phosphoric acid technology on phosphogypsum quality [Dissertation]. Chongqing University, Chongqing, April, p 2011

    Google Scholar 

  33. Du BX, Huang K, Xu, (2014) The Research on Comprehensive Utilization of Phosphogypsum PTS 1 and 2. Adv Appl Sci Manufact 1368:850–851. https://doi.org/10.4028/www.scientific.net/AMR.850-851.1368

    Article  Google Scholar 

  34. Wang LL, Lu TY, Yang BH (2015) Research progress on preparation of new materials from solid waste phosphogypsum. Anhui Agricultural Science Bulletin 021(018):83–86

    Google Scholar 

  35. Supply and demand status of China's phosphogypsum industry in 2019, https://baijiahao.baidu.com/s?id=1658917869395674172&wfr=spider&for=pc. 2020 [accessed 19 February 2020].

  36. Fauziah I, Zauyah S (1996) Characterization and land application of red gypsum: a waste product from the titanium dioxide industry. Sci Total Environ 188(2–3):243–251. https://doi.org/10.1016/0048-9697(96)05179-0

    Article  CAS  Google Scholar 

  37. Gazquez MJ, Bolivar JP, Vaca F, García-Tenorio R, Caparros A (2013) Evaluation of the use of TiO2 industry RG waste in cement production. Cement Concr Compos 37:76–81. https://doi.org/10.1016/j.cemconcomp.2012.12.003

    Article  CAS  Google Scholar 

  38. Pérez-Moreno SM, Gázquez MJ, Barneto AG, Bolívar JP (2013) Thermal characterization of new fire-insulating materials from industrial inorganic TiO2 wastes. Thermochim Acta 552(2):114–122. https://doi.org/10.1016/j.tca.2012.10.021

    Article  CAS  Google Scholar 

  39. Tayibi H, Choura M, López F, Alguacil FJ, López-Delgado A (2009) Environmental impact and management of phosphogypsum. J Environ Manage 90(8):2377–2386. https://doi.org/10.1016/j.jenvman.2009.03.007

    Article  CAS  Google Scholar 

  40. Zhao S, Ma L, Yang J, Zheng D, Liu H, Yang JJE (2017) Mechanism of CO2 capture technology based on phosphogypsum reduction thermal decomposition process. Energy Fuels 31(9):9824–9832. https://doi.org/10.1021/acs.energyfuels.7b01673

    Article  CAS  Google Scholar 

  41. Ye XD (2019) Current situation, existing problems and suggestions of phosphogypsum utilization in China in 2018. Phosphate & Compound Fertilizer 034(007):1–4

    Google Scholar 

  42. Wei ZQ, Deng ZB (2022) Research hotspots and trends of comprehensive utilization of phosphogypsum: bibliometric analysis. J Environ Radioact, 242:106778. https://doi.org/10.1016/j.jenvrad.2021.106778

    Article  CAS  Google Scholar 

  43. Web of Science (SCIE) Database, http://webofknowledge.com.

  44. Ji Xl, Chen Z, Wang H (2018) Building insulation wall material and preparation method. Chinese Patent, Appl. CN201810129910.0

  45. Chen XH (2018) Process for preparing high white ceramic material and co-producing acid from phosphogypsum and red mud. Chinese Patent, Appl 10712689(9):2018

    Google Scholar 

  46. Ai Q (2011) Industrial waste residue of phosphogypsum and red mud in the comprehensive utilization of ceramic. Wuhan University of Teconology, Hubei, May, p 2011

    Google Scholar 

  47. Chen XH, Li Y, Zhao PY, Chen Q, Wang LY, Zheng K (2018) Comprehensive utilization process for preparing antifreeze cement from red mud and phosphogypsum to recover aluminum. Chinese Patent, Appl 10711283(9):2018

    Google Scholar 

  48. Ren GK (2011) Modification of red mud and application to cement industry. Nonferrous Materials 63:123–126. https://doi.org/10.1080/00405000.2010.522047

    Article  CAS  Google Scholar 

  49. Tan MD, Kang GO, Kim YS (2019) Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products. Constr Build Mater 206:576–589. https://doi.org/10.1016/j.conbuildmat.2019.02.088

    Article  CAS  Google Scholar 

  50. Kim YS, Tran TQ, Kang GQ, Do TM (2019) Stabilization of a residual granitic soil using various new green binders. Constr Build Mater 223:724–735. https://doi.org/10.1016/j.conbuildmat.2019.07.019

    Article  CAS  Google Scholar 

  51. Shi Y, Tong SS, Li XB, Chen L, Yao XJ, Liu YF, et al (2019) Preparation method of phosphogypsum-red mud filling body based on MICP technology, Chinese Patent, Appl. CN201911023546.8.

  52. Li Z, Zhang J, Li S, Gao Y, Liu C, Qi Y (2020) Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials. J Clean Prod 245:118759. https://doi.org/10.1016/j.jclepro.2019.118759

    Article  CAS  Google Scholar 

  53. Huang XQ (2014) A kind of phosphogypsum based cementitious material and its application in mine tailings filling. Chinese Patent, Appl. CN201410311731.8

  54. Lacatusu R, Filipescu L, Rizea N et al (2014) Plant growth suitable nutritive red mud composite materials from the romanian dry landfilled red mud II. Formulation nutritive composite materials and plant growth tests at laboratory and glasshouse scale. Reviata de Chimie 65(9):1008–1014

    CAS  Google Scholar 

  55. Li J, Xie YC, Zeng Y, Su XD, Lu FH, Luo X, et al (2018) The invention relates to a process of preparing aluminum compound humic acid compound fertilizer by phosphogypsum and red mud, Chinese Patent, Appl. CN201810712689.9

  56. Li YW, Luo XH, Li CX, Millar GJ, Jiang J, Xue SG (2019) Variation of alkaline characteristics in bauxite residue under phosphogypsum amendment. J Central South Univ 26(2):361–372. https://doi.org/10.1007/s11771-019-4008-8

    Article  CAS  Google Scholar 

  57. Xue S, Li M, Jiang J, Millar GJ, Li C, Kong X (2019) Phosphogypsum stabilization of bauxite residue: conversion of its alkaline characteristics. J Environ Sci (China) 77:1–10. https://doi.org/10.1016/j.jes.2018.05.016

    Article  CAS  Google Scholar 

  58. Lopes G, Ferreira PA, Pereira FG, Curi N, Rangel WM, Guilherme LR (2016) Beneficial use of industrial by-products for phytoremediation of an arsenic-rich soil from a gold mining area. Int J Phytoremediation 18(8):777–784. https://doi.org/10.1080/15226514.2015.1131240

    Article  CAS  Google Scholar 

  59. Jiu YL, Wang N, Xu RK, Tiwari D (2010) Potential of industrial byproducts in ameliorating acidity and aluminum toxicity of soils under tea plantation. Pedosphere 5:645–654. https://doi.org/10.1016/S1002-0160(10)60054-9

    Article  Google Scholar 

  60. Wu YJ, Li M, Fu D, Santini TC, Jiang J, William H et al (2020) Simulation study for the formation of alkaline efflorescence on bauxite residue disposal areas following the phosphogypsum addition. J Clean Prod 262:121266. https://doi.org/10.1016/j.jclepro.2020.121266

    Article  CAS  Google Scholar 

  61. Wang F, Pan H, Xu J (2020) Evaluation of red mud based binder for the immobilization of copper, lead and zinc. Environ Pollut 263(Pt A):114416. https://doi.org/10.1016/j.envpol.2020.114416

    Article  CAS  Google Scholar 

  62. Tian T, Zhou J, Zhu F, Ye Y, Guo Y, Hartley W et al (2019) Effect of amendments on the leaching behavior of alkaline anions and metal ions in bauxite residue. J Environ Sci (China) 85:74–81. https://doi.org/10.1016/j.jes.2019.05.005

    Article  CAS  Google Scholar 

  63. Huang JH, Chen J, Hu HS, Zhao TS, Xie SM (2015) Red mud phosphogypsum hydraulic road base course, road base course material and its preparation method. Chinese Patent, Appl.CN201510280 789.5

  64. Cheng Y, Sun ZY, Wei JC (2014) Special curing agent for red mud roadbed by Bayer method, its preparation method and application method, Chinese Patent, Appl. CN20145601.0,2016

  65. Tq T, Kim YS, Kang GO, Dinh BH, Do TM (2019) Feasibility of reusing marine dredged claystabilized by a combination of by-products in coastal road construction. Transportation Record 2673(12):519–528. https://doi.org/10.1177/0361198119868196

    Article  Google Scholar 

  66. Fan DC, Ni W, Yan AY, Wang JY, Cui WH (2015) Orthogonal experiments on direct reduction of carbon-bearing pellets of bayer red mud. J Iron and Steel Res Internat 22:686–693. https://doi.org/10.1016/S1006-706X(15)30058-3

    Article  Google Scholar 

  67. Chun TJ, Zhu DQ, Pan J, He Z (2014) Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can Metall Q 53:183–189. https://doi.org/10.1179/1879139513Y.0000000114

    Article  CAS  Google Scholar 

  68. Ning P, Zheng SC, Ma LP, Du YL, Zhang W, Niu XK, Wang FY (2010) Kinetics and thermodynamics studies on the decompositions of phosphogypsum in different atmospheres. Adv Mater Res 160–162(2011):842–848. https://doi.org/10.4028/www.scientific.net/AMR.160-162.842

    Article  CAS  Google Scholar 

  69. Yang CY, Wei Y, Ye FB, Ding YG, Wu YX (2011) Effect of additives on thermal decomposition of phosphogypsum. Adv Mater Res 415–417(2012):735–740. https://doi.org/10.4028/www.scientific.net/AMR.415-417.735

    Article  CAS  Google Scholar 

  70. Gladyshev SV, Akcil A, Abdulvaliyev RA, Tastanov EA, Beisembekova KO, Temirova SS, Deveci H (2015) Recovery of vanadium and gallium from solid waste by-products of Bayer process. Minerals Eng 74:91–98. https://doi.org/10.1016/j.mineng.2015.01.011

    Article  CAS  Google Scholar 

  71. Lu F, Xiao T, Lin J, Li A, Long Q, Huang F, Xiao L, Li X, Wang J, Xiao Q (2017) Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure. Hydrometallurgy 175:124–132. https://doi.org/10.1016/j.hydromet.2017.10.032

    Article  CAS  Google Scholar 

  72. Abdulvaliyev RA, Akcil A, Gladyshev SV, Tastanov EA, Beisembekova KO, Akhmadiyeva NK, Deveci H (2015) Gallium and vanadium extraction from red mud of Turkish alumina refinery plant: Hydrogarnet process. Hydrometallurgy 157:72–77. https://doi.org/10.1016/j.hydromet.2015.07.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by The National Natural Science Foundation of China (Region project Nos. 52164036), The National Natural Science Foundation of China (Nos. U1960201)

Funding

Guizhou Province Graduate Research Fund (YJSCXJH[2020]185, YJSCXJH[2020]027),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xin Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was João António Labrincha Batista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y.D., Jin, H.X., Wang, M.L. et al. Collaborative Utilization Status of Red Mud and Phosphogypsum: A Review. J. Sustain. Metall. 8, 1422–1434 (2022). https://doi.org/10.1007/s40831-022-00569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00569-x

Keywords

Navigation