Skip to main content
Log in

Summary of research progress on separation and extraction of valuable metals from Bayer red mud

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bayer red mud is a strong alkaline solid waste discharged during alumina production. Due to large emissions and strong alkalinity, red mud is now mostly dammed or buried, which not only occupies huge land but also contaminates the surrounding ecosystem, causing the risk of collapse and landslide. In addition to its overall utilization in building materials, agriculture, the environment, and the chemical industry, red mud also contains valuable metals such as sodium, aluminum, iron, titanium, and scandium and is considered to be an important secondary resource. In this paper, the physicochemical properties and hazards of red mud are first introduced, and then, the overall utilization of red mud is summarized. Then, the latest research progress on the separation and extraction of valuable metals from red mud is reviewed in detail and a new comprehensive utilization method is recommended and evaluated. This paper also provides suggestions for the future development direction of the comprehensive utilization technology of red mud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  • Altundogan HS, Altundogan S, Tümen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363

    Article  CAS  Google Scholar 

  • Borra CR, Blanpain B, Pontikes Y, Binnemans K, Gerven TV (2017) Recovery of rare earths and major metals from Bauxite residue (red mud) by alkali roasting, smelting, and leaching. J Sustain Metall 3:393–404

    Article  Google Scholar 

  • Brunori C, Cremisini C, Massanisso P, Pinto V, Torricelli L (2005) Reuse of a treated red mud bauxite waste: studies on environmental compatibility. J Hazard Mater 117:55–63

    Article  CAS  Google Scholar 

  • Carneiro J, Tobaldi DM, Hajjaji W, Capela MN, Novais RM, Seabra MP, Labrincha JA (2018) Red mud as a substitute coloring agent for the hematite pigment. Ceram Int 44(4):4211–4219

    Article  CAS  Google Scholar 

  • Chen X, Guo YG, Ding S, Zhang HY, Xia FY, Wang J, Zhou MK (2019) Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J Clean Prod 207:789–800

    Article  CAS  Google Scholar 

  • Deng BN, Li GH, Luo J, Ye Q, Liu MX, Peng ZQ, Jiang T (2017) Enrichment of Sc2O3 and TiO2 from bauxite ore residues. J Hazard Mater 331:71–80

    Article  CAS  Google Scholar 

  • Feigl V, Ujaczki É, Vaszita E, Molnár M (2017) Influence of red mud on soil microbial communities: application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies. Sci Total Environ 595:903–911

    Article  CAS  Google Scholar 

  • Fois E, Lallai A, Mura G (2007) Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud. Ind Eng Chem Res 46(21):6770–6776

    Article  CAS  Google Scholar 

  • Gomes HI, Mayes WM, Rogerson M, Stewart DI, Burke IT (2016) Alkaline residues and the environment: a review of impacts, management practices and opportunities. J Clean Prod 112:3571–3582

    Article  CAS  Google Scholar 

  • Gu HN, Guo TF, Ma SC, Dai Y, Wang N (2018) Present status and prospect of red mud resource utilization and safety treatment. Chem Ind Eng Prog 37(9):3599–3608

    Google Scholar 

  • Guan JH (2000) Study on recovering Fe from red mud with SLon vertical ring and pulsating high gradient magnetic separator. Jiangxi Nonferrous Met 14(4):15–18

    Google Scholar 

  • Guo YH, Gao JJ, Xu HJ, Zhao K, Shi XF (2013) Nuggets production by direct reduction of high iron red mud. J Iron Steel Res Int 20(5):24–27

    Article  CAS  Google Scholar 

  • Han YS, Ji S, Lee PK, Oh C (2017) Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2. J Hazard Mater 326:87–93

    Article  CAS  Google Scholar 

  • Hao YD, Wu L, Shen P, Li SQ (2015) Precise reduction experiment study of Bayer red mud. Environ Eng 1:105–108

    Google Scholar 

  • Hou LJ, Liu TY, Lu AX (2017) Red mud and fly ash-based ceramic foams using starch and manganese dioxide as foaming agent. Trans Nonferrous Met Soc China 27:591–598

    Article  CAS  Google Scholar 

  • Hu JS, Zou D, Chen J, Li DQ (2020) A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium. Sep Purif Technol 233:115977

    Article  CAS  Google Scholar 

  • Jing YR, Jing YQ, Yang Q (2001) Basic properties and engineering characteristics of red mud. Light Met 4:20–23

    Google Scholar 

  • Junior ABB, Espinosa DCR, Tenorio JAS (2021) Selective separation of Sc(III) and Zr(IV) from the leaching of bauxite residue using trialkylphosphine acids, tertiary amine, tri-butyl phosphate and their mixtures. Sep Purif Technol 279:119798

    Article  Google Scholar 

  • Kasliwal P, Sai PST (1999) Enrichment of titanium dioxide in red mud: a kinetic study. Hydrometallurgy 53:73–87

    Article  CAS  Google Scholar 

  • Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recy 141:483–498

    Article  Google Scholar 

  • Kinnarinen T, Theliander H, Häkkinen A, Mattsson T (2019) The effect of pH adjustment on the properties and pressure filtration characteristics of bauxite residue slurries. Sep Purif Technol 212:289–298

    Article  CAS  Google Scholar 

  • Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 108:11–32

    Article  CAS  Google Scholar 

  • Kong XF, Guo Y, Xue SG, Hartley W, Wu C, Ye YZ, Cheng QY (2017) Natural evolution of alkaline characteristics in bauxite residue. J Clean Prod 143:224–230

    Article  CAS  Google Scholar 

  • Li FW (2008) Superficial modification of porous ceramics filter media on the basis of red mud and its application in the water treatment. Wuhan University of Technology, pp 138–152

  • Li D, Pan LX, Zhao LQ, Shi LF, Wu X (2014a) Advanced research of utilization technology of red mud. Environ Eng 32(S1):616−618+625

  • Li GH, Liu MX, Rao MJ, Jiang T, Zhuang JQ, Zhang YB (2014b) Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J Hazard Mater 280:774–780

    Article  CAS  Google Scholar 

  • Li H, Liu XM, Zhao XB, Chen JL, Yin HF (2017a) Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust. Chinese J Eng 39(9):1331–1338

    CAS  Google Scholar 

  • Li JQ, Long Q, Xu BJ (2009a) Research on alumina recovery from red mud by Sintering process. Light Met 11:11–13

    CAS  Google Scholar 

  • Li QY, Wei GT, Yang YJ, Li ZM, Zhang LY, Huang QM (2020) Mechanochemical synthesis of Fe2O3/Zn-Al layered double hydroxide based on red mud. J Hazard Mater 394:122566

    Article  CAS  Google Scholar 

  • Li SH, Gao JY, Cao ZC, Gu MY, Jin YL (2018a) Experimental study on iron reduction by red mud rotary hearth furnace. Light Met (5):14−16+20

  • Li W, Zhu XB, Guan XM (2016) Study on the preparation of Ti-enriched slag by chemical beneficiation of red mud. Rare Met Cemented Carbides 44(4):25−27+72

  • Li W, Zhu XB, Tang S (2017b) Selective separation of sodium from red mud with citric acid leaching. Sep Sci Technol 52(11):1876–1884

    Article  CAS  Google Scholar 

  • Li XB, Xiao W, Liu W, Liu GH, Peng ZH, Zhou QS, Qi TG (2009b) Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans Nonferrous Met Soc China 19:1342–1347

    Article  CAS  Google Scholar 

  • Li XF, Ye YZ, Xue SG, Jiang J, Wu C, Kong XF, Hartley W, Li YW (2018b) Leaching optimization and dissolution behavior of alkaline anions in bauxite residue. Trans Nonferrous Met Soc China 28:1248–1255

    Article  CAS  Google Scholar 

  • Li XF, Zhang TA, Wang K, Lv GZ, Chao X, Yang XW (2022a) Experimental research on vortex melting reduction of high-iron red mud (bauxite residue). B Environ Contam Tox 109:155–162

    Article  CAS  Google Scholar 

  • Li XK, Han JR, Liu Y, Dou ZH, Zhang TA (2022b) Summary of research progress on industrial flue gas desulfurization technology. Sep Purif Technol 281:119849

    Article  CAS  Google Scholar 

  • Li ZH, Din J, Xu JS, Liao CG, Yin FG, Lu T, Cheng L, Li JM (2013) Discovery of the REE minerals in the Wulong-Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes. J Geochem Explor 133:88–102

    Article  CAS  Google Scholar 

  • Liang WT, Couperthwaite SJ, Kaur G, Yan C, Johnstone DW, Millar GJ (2014) Effect of strong acids on red mud structural and fluoride adsorption properties. J Colloid Interf Sci 423:158–165

    Article  CAS  Google Scholar 

  • Liao SZ, Yang JL, Ma SJ (2019) Research progress in the comprehensive utilization of red mud. Conserv Util Min Resour 39(3):21–27

    Google Scholar 

  • Liu GT, Liu Y, Lv GZ, Zhang TA (2020a) Wet grinding of calcified slag to improve alumina extraction from red mud by the calcification-carbonization method. JOM 72(2):970–977

    Article  CAS  Google Scholar 

  • Liu GT, Liu Y, Zhang TA (2019) Approaches to improve alumina extraction based on the phase transformation mechanism of recovering alkali and extracting alumina by the calcification-carbonization method. Hydrometallurgy 189:105123

    Article  CAS  Google Scholar 

  • Liu MY, Chen J, Zou D, Yan YF, Li DQ (2022) A novel synergistic extraction system for the recovery of scandium (III) from sulfuric acid medium with mixed Cyanex923 and N1923. Sep Purif Technol 283:120223

    Article  CAS  Google Scholar 

  • Liu SH, Zhao XL, He AP, Zeng JM, Wu N, Meng ZW, Huang SB, Guan YT (2020b) Experimental study on preparation of abrasion resistant white cast iron by red mud reduction with Bayer process. Foundry 69(1):29–34

    Google Scholar 

  • Liu WC, Chen XQ, Li WX, Yu YF, Yan K (2014a) Environmental assessment, management and utilization of red mud in China. J Clean Prod 84:606–610

    Article  CAS  Google Scholar 

  • Liu WC, Yang JK, Xiao B (2008) Recovering iron and preparing building material with residues from Bayer red mud. Chinese J Nonferrous Met 18(1):187–192

    CAS  Google Scholar 

  • Liu X, Han YX, He FY, Gao P, Yuan S (2021) Characteristic, hazard and iron recovery technology of red mud — a critical review. J Hazard Mater 420:126542

    Article  CAS  Google Scholar 

  • Liu XM, Liu GH, Li XB (1999) Studies on the treatment of garnet hydrate with soda solution. Light Met 12:12–14

    Google Scholar 

  • Liu Y, Lin CX, Wu YG (2007) Characterization of red mud derived from a combined Bayer Process and bauxite calcination method. J Hazard Mater 146:255–261

    Article  Google Scholar 

  • Liu YJ, Zuo KS, Yang G, Shang Z, Zhang JB (2016) Recovery of ferric oxide from bayer red mud by reduction roasting-magnetic separation process. J Wuhan University Technol (mater Sci Ed) 31(2):404–407

    Article  CAS  Google Scholar 

  • Liu YY, Zhao BC, Tang Y, Wan PY, Chen YM, Lv ZJ (2014b) Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochim Acta 588:11–15

    Article  CAS  Google Scholar 

  • Liu ZB, Li HX, Huang MM, Jia DM, Zhang N (2017) Effects of cooling method on removal of sodium from active roasting red mud based on water leaching. Hydrometallurgy 167:92–100

    Article  CAS  Google Scholar 

  • Lu HF (2015) Experiment on roasting reduction of red mud with high iron by spent pot lining at high temperature. Light Met (1):9−11+44

  • Luo HL, Huang SS, Luo L, Liu Y, Wei JH (2011) Effect of chemical fixation of Pb in mine contaminated soil using red mud-phosphorus composition particles. Chin J Nonferrous Met 21(9):2277–2284

    CAS  Google Scholar 

  • Lyu F, Hu YH, Wang L, Sun W (2021) Dealkalization processes of bauxite residue: a comprehensive review. J Hazard Mater 403:123671

    Article  Google Scholar 

  • Mohapatro S, Rajanikanth BS (2012) Dielectric barrier discharge cascaded with red mud waste to enhance NOx removal from diesel engine exhaust. IEEE T Dielect El in 19(2):641–647

    Article  CAS  Google Scholar 

  • Nie QK, Hu W, Huang BS, Shu X, He Q (2019) Synergistic utilization of red mud for fluegas desulfurization and fly ash-based geopolymer preparation. J Hazard Mater 369:503–511

    Article  CAS  Google Scholar 

  • Niu J, Zhang HR, Li LB, Guo YX (2021) Cost-effective activated carbon (AC) production from partial substitution of coal with red mud (RM) as additive for SO2 and NOx abatement at low temperature. Fuel 293(5):120448

    Article  CAS  Google Scholar 

  • Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1994) Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta 296(3):305–313

    Article  Google Scholar 

  • Pepper RA, Couperthwaite SJ, Millar GJ (2016) Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Miner Eng 99:8–18

    Article  CAS  Google Scholar 

  • Prasad PM, Singh M (1997) Problems in the disposal and utilization of red muds. The Banaras Metallurgist (14/15):127−140

  • Qi C (2019) Progress in extraction of valuable metals from red mud. Light Met 6:6–10

    Google Scholar 

  • Sanchez-Segado S, Makanyire T, Escudero-Castejon L, Hara Y, Jha A (2015) Reclamation of reactive metal oxides from complex minerals using alkali roasting and leaching-an improved approach to process engineering. Green Chem 17:2059–2080

    Article  CAS  Google Scholar 

  • Sayan E, Bayramoglu M (2004) Statistical modeling and optimization of ultrasonicassited sulfuric acid leaching of TiO2 from red mud. Hydrometallurgy 71:397–401

    Article  CAS  Google Scholar 

  • Shao LH, Xia XN, Wei GT, Qin JL, Liu YT (2021) A dramatic enhancement of antibiotic photodegradation catalyzed by red mud-derived Bi5FeTi3O15. Sep Purif Technol 275:119244

    Article  CAS  Google Scholar 

  • Snars K, Gilkes RJ (2009) Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci 46:13–20

    Article  CAS  Google Scholar 

  • Sun W, Zheng SL, Zhang YF, Xu HB, Zhang Y (2008) Behavior of Al and Si in Bayer red mud processed by NaOH sub-molten salt. Chinese J Process Eng 8(6):1148–1152

    CAS  Google Scholar 

  • Sushil S, Batra VS (2008) Catalytic applications of red mud, an aluminium industry waste: a review. Appl Catal B-Environ 81:64–77

    Article  CAS  Google Scholar 

  • Sutar H, Mishra SC, Sahoo SK, Chakraverty AP, Maharana HS (2014) Progress of red mud utilization: an overview. Am Chem Sci J 4(3):255–279

    Article  Google Scholar 

  • Teng XL, Li JF, Wang JK, Liu JC, Ge XY, Gu TT (2021) Effective degradation of atrazine in wastewater by three-dimensional electrochemical system using fly ash-red mud particle electrode: Mechanism and pathway. Sep Purif Technol 267:118661

    Article  CAS  Google Scholar 

  • Wang H, She XF, Zhao QQ, Xue QG, Wang JS (2012) Production of iron nuggets using iron-rich red mud by direct reduction. Chinese J Process Eng 12(5):816–821

    CAS  Google Scholar 

  • Wang JJ, Wang YY, Zhang W, Jin YK, Chen P, He YF, Wang HM (2019a) Study on iron transformation in high-iron red mud treated by rice stalk hydrothermal method. J Uni Sci Technol Liaoning 42(6):401–405

    Google Scholar 

  • Wang K, Liu Y, Dou ZH, Lu GZ, Li XF, Zhang TA (2022) A novel method of extracting iron from high-iron red mud and preparing low-carbon cement clinker from tailings. JOM 74(7):2750–2759

    Article  CAS  Google Scholar 

  • Wang K, Liu Y, Zhang TA, Li XF, Chen X (2020) Investigation of the smelting reduction mechanism and of iron extraction from high-iron red mud. Mater Res Express 7:126514

    Article  CAS  Google Scholar 

  • Wang KQ, Yu YB, Wang H, Chen J (2010) Experimental investigation on leaching scandium from red mud by hydrochloric acid. Chinese Rare Earth 31(1):95–98

    Google Scholar 

  • Wang L, Sun N, Tang HH, Sun W (2019b) A review on comprehensive utilization of red mud and prospect analysis. Minerals. 9:362

    Article  CAS  Google Scholar 

  • Wang MF, Liu XM (2021) Applications of red mud as an environmental remediation material: a review. J Hazard Mater 408:124420

    Article  CAS  Google Scholar 

  • Wang XK, Zhang YH, Lv FZ, An Q, Lu RR, Hu P, Jiang SB (2015) Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions. Environ Prog Sustain 34(1):81–87

    Article  Google Scholar 

  • Wang YX, Zhang TA, Lv GZ, Zhang WG (2019c) Assessment of bauxite residue for reclamation purposes after calcification-carbonization treatment. JOM 71(9):2944–2951

    Article  CAS  Google Scholar 

  • Wang YX, Zhang TA, Lyu GZ, Guo FF, Zhang WG, Zhang YH (2018) Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue. J Clean Prod 188:456–465

    Article  CAS  Google Scholar 

  • Wang YX, Zhang TA, Zhang TH, Lv GZ, Zhang WG (2019d) Transformation and characterization of cement clinker prepared from new structured red mud by sintering. JOM 71(8):2505–2512

    Article  CAS  Google Scholar 

  • Wehr JB, Fulton I, Menzies NW (2006) Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory. Australia Environ Manage 37(3):297–306

    Google Scholar 

  • Wei P (2012) Research of industrial flue gas desulfurization by alumina red mud. Zhengzhou University, pp 38–44

  • Wu SC, Zhu LX, Sun TC, Xu CY, Li XH, Wang XP (2019) Comprehensive utilization status and prospect of red mud. Metal Mine 6:38–44

    Google Scholar 

  • Xiao JH, Zhong NL, Gao DQ, Zou K, Wang Z, Huang WX, Xiong WL (2022a) An efficient process to recover iron from Bayer red mud. JOM 74(8):3172−3180

  • Xiao JH, Zou K, Zhong NL, Gao DQ (2022b) Selective separation of iron and scandium from Bayer Sc-bearing red mud. J Rare Earths. https://doi.org/10.1016/j.jre.2022.06.003

  • Xie WM, Zhang N, Li J, Zhou FP, Ma XZ, Gu G, Zhang WZ (2017) Optimization of condition for extraction of aluminum and iron from red mud by hydrochloric acid leaching. Chinese J Environ Eng 11(10):5677–5682

    Google Scholar 

  • Xiong P, Liu ZW, Wei J (2021) Recovery of alumina from red mud and high sulfur bauxite by synergistic roasting. Nonferrous Met Eng 11(8):61–67

    Google Scholar 

  • Xu BA, Smith P, Wingate C, Silva LD (2010) The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion. Hydrometallurgy 105:75–81

    Article  CAS  Google Scholar 

  • Yadav VS, Prasad M, Khan J, Amritphale SS, Singh M, Raju CB (2010) Sequestration of carbon dioxide (CO2) using red mud. J Hazard Mater 176:1044–1050

    Article  CAS  Google Scholar 

  • Yan YC, Chang Z, Fu Y (2020) Advances in research on red mud utilization. China Energy Environ Prot 42(10):134–138

    Google Scholar 

  • Yang JK, Zhang DD, Hou J, He BP, Xiao B (2008) Preparation of glass-ceramics from red mud in the aluminium industries. Ceram Int 34:125–130

    Article  CAS  Google Scholar 

  • Yang P, Wu WN (2017) Analysis of emergency treatment of red mud leakage event in Hungary and its enlightenment to China. Sci Technol Innov Her 14(9):163–164

    Google Scholar 

  • Yang XW, Chen X, Zhang TA, Ye JY, Lv ZG, Zhang JS (2022) Study on reductive smelting of high-iron red mud for iron recovery. Metals 12:639

    Article  CAS  Google Scholar 

  • Zeng H, Lyu F, Hu GY, Tang HH, Wang L, Sun W, Hu YH, Liu RQ (2020) Dealkalization of bauxite residue through acid neutralization and its revegetation potential. JOM 72(1):319–325

    Article  CAS  Google Scholar 

  • Zeng H, Tang HH, Sun W, Wang L (2022) Strengthening solid-liquid separation of bauxite residue through the synergy of charge neutralization and flocculation. Sep Purif Technol 285:120296

    Article  CAS  Google Scholar 

  • Zhang JZ, Yao ZY, Wang K, Wang F, Jiang HG, Liang M, Wei JC, Airey G (2021a) Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: a critical review. Constr Build Mater 270:121419

    Article  CAS  Google Scholar 

  • Zhang LL, Zhang TA, Lv GZ, Zhang WG, Li TT, Cao XJ (2021b) Separation and extraction of scandium from titanium dioxide waste acid. JOM 73(5):1301–1309

    Article  CAS  Google Scholar 

  • Zhang TA, Lv GZ, Liu Y, Dou ZH, Zhao QY, Niu LP, He JC (2011) A method of consumption of Bayer red mud, China Patent 201110275030.X 1-7

  • Zhang TA, Lv GZ, Liu Y, Zhang ZM, Zhu XF, Dou ZH (2014) A method of recovery of alkali and aluminum from Bayer red mud by calcification-carbonization method, China Patent 201410182568.X 1-10

  • Zhang TA, Wang YX, Lu GZ, Liu Y, Zhang WG, Zhao QY (2018) Comprehensive utilization of red mud: current research status and a possible way forward for non-hazardous treatment. Light Met 135−141

  • Zhang TA, Wang YX, Wang K, Dou ZH, Lv GZ, Liu Y, Zhao QY, Niu LP, Zhang ZM, Han JB, Guo JH (2019) A method of iron extraction from high-iron red mud and direct production of cement. China Patent 201910291219.4 1-7

    Google Scholar 

  • Zhang Y, Mo HR (2019) Research progress on dealkalization technology for red mud. China Nonferr Metall 48(2):26−29+33

  • Zhang YW, Qian WM, Zhou PX, Liu Y, Lei XL, Li B, Ning P (2021c) Research on red mud-limestone modified desulfurization mechanism and engineering application. Sep Purif Technol 272:118867

    Article  CAS  Google Scholar 

  • Zhong L, Zhang YF, Zhang Y (2009) Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. J Hazard Mater 172:1629–1634

    Article  CAS  Google Scholar 

  • Zhu XB, Gong WH, Li W (2021) Preparation of titanium-rich materials and dissolution behavior of components from red mud by active roasting and combined leaching. Chinese J Nonferrous Met 31(8):2227–2237

    Google Scholar 

  • Zhu XB, Li W, Guan XM (2015) Kinetics of titanium leaching with citric acid in sulfuric acid from red mud. Trans Nonferrous Met Soc China 25:3139–3145

    Article  CAS  Google Scholar 

  • Zhu XB, Li W, Guan XM (2016a) Experiment and kinetics of dealkalization with water leaching from red mud. Inorg Chem Ind 48(1):41–43

    CAS  Google Scholar 

  • Zhu XB, Li W, Zhao H, Zhang CX (2018) Selective dealkalization of red mud using calcium oxide with pressure leaching. JOM 70(12):2800–2806

    Article  CAS  Google Scholar 

  • Zhu XF, Zhang TA, Wang YX, Lü GZ, Zhang WG (2016b) Recovery of alkali and alumina from Bayer red mud by the calcification-carbonation method. Int J Min Met Mater 23(3):257–268

    Article  CAS  Google Scholar 

  • Zou D, Chen J, Li DQ (2021) Solvent extraction of titanium(IV) from sulfuric acid solution with Cyanex923 and its application in leach liquor of red mud. Sep Purif Technol 277:119470

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U1710257, U1702253, U1903129, 52204419) and the National key research and development plan (2017YFC021040304, 2017YFC0210404).

Author information

Authors and Affiliations

Authors

Contributions

Wang and Li provided conceptualization and first draft preparation; Dou, Liu, Lv, and Zhang reviewed and edited.

Corresponding author

Correspondence to Zhihe Dou.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not-applicable.

Consent for publication

Not-applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ioannis A. Katsoyiannis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Dou, Z., Liu, Y. et al. Summary of research progress on separation and extraction of valuable metals from Bayer red mud. Environ Sci Pollut Res 29, 89834–89852 (2022). https://doi.org/10.1007/s11356-022-23837-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23837-5

Keywords

Navigation