Skip to main content
Log in

Solvent Extraction of Copper and Zinc from Sulfate Leach Solution Derived from a Porcelain Stone Tailings Sample with Chemorex CP-150 and D2EHPA

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

This research investigates the extraction behavior of copper and zinc from the sulfate leachate of a porcelain stone tailings sample with Chemorex CP-150 and D2EHPA in detail. The findings demonstrated that Chemorex had greater ability and selectivity in the extraction of copper, while D2EHPA was better in the extraction of zinc. 97.88% copper and 78.2% zinc were extracted, respectively, with Chemorex and D2EHPA within 10 min contact time at an 1:1 aqueous/organic ratio, 10% (v/v) extractant concentration, and ambient temperature. The appropriate solution pH levels for Chemorex and D2EHPA were found to be 2.5 and 2, respectively. Also, a McCabe–Thiele diagram was drawn and one single-step extraction for copper and a two-stage process for zinc were needed to achieve the highest extraction efficiency. Additionally, the mechanism study indicated the association of ~ 1.5 and 1 mol of Chemorex CP-150 and D2EHPA for the extraction of one mole of Cu and Zn from the leach solution. Moreover, thermodynamic parameters, including ΔH, ΔG and ΔS were found to be 65.29 kJ/mol, 9.83 kJ/mol, and 186.14 J/mol K for copper and − 18.71 kJ/mol, 17.80 kJ/mol, and − 122.53 J/mol K for zinc, respectively, indicating that the extraction process was endothermic for copper and exothermic for zinc.

Graphical Abstract

The effect of contact time, pH, and extractants concentration on the extraction efficiency of Cu and Zn by Chemorex CP-150 and D2EHPA and also the number moles required for extractants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abkhoshk E, Jorjani E, Al-Harahsheh MS, Rashchi F, Naazeri M (2014) Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 149:153–167. https://doi.org/10.1016/j.hydromet.2014.08.001

    Article  CAS  Google Scholar 

  2. Deng J, Wen S, Yin Q, Wu D, Sun Q (2017) Leaching of malachite using 5-sulfosalicylic acid. J Taiwan Inst Chem Eng 71:20–27. https://doi.org/10.1016/j.jtice.2016.11.013

    Article  CAS  Google Scholar 

  3. Asadi T, Azizi A, Lee JC, Jahani M (2018) Solvent extraction of zinc from sulphate leaching solution of a sulphide-oxide sample using D2EHPA and Cyanex 272. J Disper Sci Technol 39:1328–1334. https://doi.org/10.1080/01932691.2017.1402338

    Article  CAS  Google Scholar 

  4. Bayati B, Azizi A, Karamoozian M (2018) A comprehensive study of the leaching behavior and dissolution kinetics of copper oxide ore in sulfuric acid lixiviant. Sci. Iran 25:1412–1422. https://doi.org/10.24200/sci.2018.5226.1154

    Article  Google Scholar 

  5. Sayilgan E, Kukrer T, Civelekoglu G, Ferella F, Akcil A, Veglio F, Kitis M (2009) A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy 97:158–166. https://doi.org/10.1016/j.hydromet.2009.02.008

    Article  CAS  Google Scholar 

  6. Agarwal S, Ferreira AE, Santos SM, Reis MTA, Ismael MRC, Correia MJN, Carvalho JM (2010) Separation and recovery of copper from zinc leach liquor by solvent extraction using Acorga M5640. Int J Miner Process 97:85–91. https://doi.org/10.1016/j.minpro.2010.08.009

    Article  CAS  Google Scholar 

  7. Ng KS, Head I, Premier GC, Scott K, Yu E, Lloyd J, Sadhukhan J (2016) A multilevel sustainability analysis of zinc recovery from wastes. Resour Conserv Recy 113:88–105. https://doi.org/10.1016/j.resconrec.2016.05.013

    Article  Google Scholar 

  8. Li H, Eksteen J, Oraby E (2018) Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives—a review. Resour Conserv Recy 139:122–139. https://doi.org/10.1016/j.resconrec.2018.08.007

    Article  Google Scholar 

  9. Pradhan S, Mishra S (2015) A review on extraction and separation studies of copper with various commercial extractants. Metall Res Technol 112:202. https://doi.org/10.1051/metal/2015005

    Article  CAS  Google Scholar 

  10. Pathak A, Roy A, Manna M (2016) Recovery of zinc from industrial waste pickling liquor. Hydrometallurgy 163:161–166. https://doi.org/10.1016/j.hydromet.2016.04.006

    Article  CAS  Google Scholar 

  11. Mahandra H, Singh R, Gupta B (2017) Liquid-liquid extraction studies on Zn(II) and Cd(II) using phosphonium ionic liquid (Cyphos IL 104) and recovery of zinc from zinc plating mud. Sep Purif Technol 177:281–292. https://doi.org/10.1016/j.seppur.2016.12.035

    Article  CAS  Google Scholar 

  12. Azizitorghabeh A, Rashchi F, Babakhani A, Noori M (2017) Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA. Sep Sci Technol 52:476–486. https://doi.org/10.1016/j.ultsonch.2016.07.014

    Article  CAS  Google Scholar 

  13. Daryabor M, Ahmadi A, Zilouei H (2017) Solvent extraction of cadmium and zinc from sulphate solutions: comparison of mechanical agitation and ultrasonic irradiation. Ultrason Sonochem 34:931–937. https://doi.org/10.1016/j.ultsonch.2016.07.014

    Article  CAS  Google Scholar 

  14. Wang Y, Zhang Z, Kuang S, Wu G, Li Y, Li Y, Liao W (2018) Selective extraction and recovery of copper from chloride solution using Cextrant 230. Hydrometallurgy 181:16–20. https://doi.org/10.1016/j.hydromet.2018.08.007

    Article  CAS  Google Scholar 

  15. Davenport WG, King M, Schlesinger M, Biswas AK (2002) Solvent extraction transfer of cu from leach solution to electrolyte, extractive metallurgy of copper. In: Extractive metallurgy of copper. Pergamon, Oxford, pp 307–325

  16. El-Nadi YA (2017) Solvent extraction and its applications on ore processing and recovery of metals: classical approach. Sep Purif Rev 46:195–215. https://doi.org/10.1080/15422119.2016.1240085

    Article  CAS  Google Scholar 

  17. Tanda BC, Oraby EA, Eksteen JJ (2017) Recovery of copper from alkaline glycine leach solution using solvent extraction. Sep Purif Technol 187:389–396. https://doi.org/10.1016/j.seppur.2017.06.075

    Article  CAS  Google Scholar 

  18. Aksamitowski P, Filipowiak K, Wieszczycka K (2019) Selective extraction of copper from Cu-Zn sulfate media by new generation extractants. Sep Purif Technol 222:22–29. https://doi.org/10.1016/j.seppur.2019.03.100

    Article  CAS  Google Scholar 

  19. Owusu G (1999) Selective extraction of copper from acidic zinc sulfate leach solution using LIX 622. Hydrometallurgy 51:1–8. https://doi.org/10.1016/S0304-386X(98)00062-0

    Article  CAS  Google Scholar 

  20. Mansur MB, Rocha SDF, Magalhaes FS, dos Santos BJ (2008) Selective extraction of zinc(II) over iron (II) from spent hydrochloric acid pickling effluents by liquid–liquid extraction. J Hazard Mater 150:669–678. https://doi.org/10.1016/j.jhazmat.2007.05.019

    Article  CAS  Google Scholar 

  21. Panigrahi S, Parhi PK, Sarangi K, Nathsarma KC (2009) A study on extraction of copper using LIX 84-I and LIX 622N. Sep Purif Technol 70:58–62. https://doi.org/10.1016/j.seppur.2009.08.013

    Article  CAS  Google Scholar 

  22. Deep A, Kumar P, Carvalho JMR (2010) Recovery of copper from zinc leaching liquor using Acorga M5640. Sep Purif Technol 76:21–25. https://doi.org/10.1016/j.seppur.2010.09.015

    Article  CAS  Google Scholar 

  23. Regel-Rosocka M, Winiewski M (2011) Selective removal of zinc(II) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy 110:85–90. https://doi.org/10.1016/j.hydromet.2011.08.012

    Article  CAS  Google Scholar 

  24. Barik G, Nathsarma KC, Sarangi K (2013) Recovery of copper from a waste heat boiler dust leach liquor using LIX 84I and LIX 622N. Solvent Extr Ion Exch 31:198–209. https://doi.org/10.1080/07366299.2012.735548

    Article  CAS  Google Scholar 

  25. Pospiech B, Chagnes A (2015) Highly selective solvent extraction of Zn (II) and Cu (II) from acidic aqueous chloride solutions with mixture of Cyanex 272 and Aliquat 336. Sep Sci Technol 50:1302–1309. https://doi.org/10.1080/01496395.2014.967777

    Article  CAS  Google Scholar 

  26. Sadat AS, Ahmadi A, Zilouei H (2016) Separation of Cu from dilute Cu-Ni-Co bearing bioleach solutions using solvent extraction with Chemorex CP-150. Sep Sci Technol 51:2903–2912. https://doi.org/10.1080/01496395.2016.1228676

    Article  CAS  Google Scholar 

  27. Shah K, Gupta K, Sengupta B (2017) Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. J Environ Chem Eng 5:5260–5269. https://doi.org/10.1016/j.jece.2017.09.061

    Article  CAS  Google Scholar 

  28. Mądrzak-Litwa I, Borowiak-Resterna A (2018) Solvent extraction of zinc from chloride solutions using dialkyl derivatives of 2,2′-bibenzimidazole as extractants. Hydrometallurgy 182:8–20. https://doi.org/10.1016/j.hydromet.2018.10.005

    Article  CAS  Google Scholar 

  29. Reis MTA, Ismael MRC, Wojciechowska A, Wojciechowska I, Aksamitowski P, Wieszczycka K, Carvalho JMR (2019) Zinc(II) recovery using pyridine oxime-ether—novel carrier in pseudo-emulsion hollow fiber strip dispersion system. Sep Purif Technol 223:168–177. https://doi.org/10.1016/j.seppur.2019.04.076

    Article  CAS  Google Scholar 

  30. Agarwal S, Reis MTA, Ismael MRC, Carvalho JMR (2015) Extraction of Cu(II) with Acorga M5640 using hollow fibre liquid membrane. Chem Pap 69:679–689. https://doi.org/10.1515/chempap-2015-0076

    Article  CAS  Google Scholar 

  31. Sombhatla SS, Kumar A, Mashruwala S, Kr. Rokkam K, Shukla A (2016) Comparative study of organic solvents for extraction of copper from ammoniacal carbonate solution. Hydrometallurgy 166:94–97. https://doi.org/10.1016/j.hydromet.2016.09.007

    Article  CAS  Google Scholar 

  32. Feizollahi S, Azizi A (2018) Solvent extraction of copper from an industrial sulfate liquor using Chemorex CP-150. JME 9:905–916. https://doi.org/10.22044/jme.2018.7161.1568

    Article  Google Scholar 

  33. Ali AMI, Ahmad IM, Daoud JA (2006) CYANEX 272 for the extraction and recovery of zinc from aqueous waste solution using a mixer-settler unit. Sep Purif Technol 47:135–140. https://doi.org/10.1016/j.seppur.2005.06.015

    Article  CAS  Google Scholar 

  34. Baba AA, Adekola FA (2011) Beneficiation of a Nigerian sphalerite mineral: solvent extraction of zinc by Cyanex® 272 in hydrochloric acid. Hydrometallurgy 109:187–193. https://doi.org/10.1016/j.hydromet.2011.06.004

    Article  CAS  Google Scholar 

  35. Fleitlikh IY, Grigorieva NA, Nikiforova LK, Logutenko OA (2017) Purification of zinc sulfate solutions from chloride using extraction with mixtures of a trialkyl phosphine oxide and organophosphorus acids. Hydrometallurgy 169:585–588. https://doi.org/10.1016/j.hydromet.2017.04.004

    Article  CAS  Google Scholar 

  36. Ahmadipour M, Rashchi F, Ghafarizadeh B, Mostoufi N (2011) Synergistic effect of D2EHPA and Cyanex 272 on separation of zinc and manganese by solvent extraction. Sep Sci Technol 46:2305–2312. https://doi.org/10.1080/01496395.2011.594848

    Article  CAS  Google Scholar 

  37. Sun Q, Wang W, Yang L, Huang S, Xu Z, Ji Z, Li Y, Hu Y (2018) Separation and recovery of heavy metals from concentrated smelting waste water by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenoneoxime and bis(2,4,4-trimethylpentyl)-phosphinic acid. Solvent Extr Ion Exc 36:175–190. https://doi.org/10.1080/07366299.2018.1446680

    Article  CAS  Google Scholar 

  38. Fouad EA (2009) Separation of copper from aqueous sulfate solutions by mixtures of Cyanex 301 and LIX® 984N. J Hazard Mater 166:720–727. https://doi.org/10.1016/j.jhazmat.2008.11.114

    Article  CAS  Google Scholar 

  39. El-Hefny NE, Daoud JA (2007) Extraction of copper(II) by CYANEX 302 in kerosene from different aqueous media. Solvent Extr Ion Exch 259:831–843. https://doi.org/10.1080/07366290701634172

    Article  CAS  Google Scholar 

  40. Hosseini T, Mostoufi N, Daneshpayeh M, Rashchi F (2011) Modeling and optimization of synergistic effect of Cyanex 302 and D2EHPA on separation of zinc and manganese. Hydrometallurgy 105:277–283. https://doi.org/10.1016/j.hydromet.2010.10.015

    Article  CAS  Google Scholar 

  41. Mishra S, Devi NB (2011) Extraction of copper(II) from hydrochloric acid solution by Cyanex 921. Hydrometallurgy 107:29–33. https://doi.org/10.1016/j.hydromet.2010.12.016

    Article  CAS  Google Scholar 

  42. Devi NB, Mishra S (2012) Liquid-liquid extraction of copper (II) from chloride media by Cyanex 923 in kerosene. J S Afr Inst Min Metall 112:859–864

    CAS  Google Scholar 

  43. Barnard KR, Kelly NJ, Shiers DW (2014) Chemical reactivity between bis(2-ethylhexyl)phosphoric acid (DEHPA) and tributyl phosphate. Hydrometallurgy 146:1–7. https://doi.org/10.1016/j.hydromet.2014.02.014

    Article  CAS  Google Scholar 

  44. Vahidi E, Rashchi F, Moradkhani D (2009) Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Miner Eng 22:204–206. https://doi.org/10.1016/j.mineng.2008.05.002

    Article  CAS  Google Scholar 

  45. Cheng CY, Barnard KR, Zhang W, Zhu Z, Pranolo Y (2016) Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chin J Chem Eng 24:237–248. https://doi.org/10.1016/j.cjche.2015.06.002

    Article  CAS  Google Scholar 

  46. Reddy BR, Park KH, Mohapatra D (2007) Process development for the separation and recovery of copper from sulphate leach liquors of synthetic Cu–Ni–Co–Fe matte using LIX 84 and LIX 973N. Hydrometallurgy 87:51–57. https://doi.org/10.1016/j.hydromet.2007.01.004

    Article  CAS  Google Scholar 

  47. Elizalde MP, Rúa MS, Menoyo B, Ocio A (2019) Solvent extraction of copper from acidic chloride solutions with LIX 84. Hydrometallurgy 183:213–220. https://doi.org/10.1016/j.hydromet.2018.12.013

    Article  CAS  Google Scholar 

  48. Lu J, Dreisinger D (2013) Solvent extraction of copper from chloride solution I: extraction isotherms. Hydrometallurgy 137:13–17. https://doi.org/10.1016/j.hydromet.2013.04.001

    Article  CAS  Google Scholar 

  49. Gardic V, Conic V, Petrovic B, Trujic MIV, Stankovic V (2011) TBP as an extractant for zinc(II) from spent pickling solution. Tech Technol Educ Manag 6:1260–1264

    Google Scholar 

  50. Li L, Wang Y, An W, Bao S (2017) Effect of the structure of Alkyl salicylaldoxime on extraction of copper(II). Minerals 7:61. https://doi.org/10.3390/min7040061

    Article  CAS  Google Scholar 

  51. Asghari H, Safarzadeh MS, Asghari G, Moradkham D (2009) The effect of impurities on the extraction of copper from sulfate medium using LIX-984N in kerosene. Russ J Non-Ferrous Met 50:89–96. https://doi.org/10.3103/S1067821209020035

    Article  Google Scholar 

  52. Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH (2012) Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C. Hydrometallurgy 121–124:116–119. https://doi.org/10.1016/j.hydromet.2012.03.008

    Article  CAS  Google Scholar 

  53. Pouramini Z, Moradi A (2012) Characterization of 5-nonylsalicylaldoxime production and the effects of modifiers on its extracting/stripping properties Res. Chem Intermed 38:2401–2409. https://doi.org/10.1007/s11164-012-0556-3

    Article  CAS  Google Scholar 

  54. Miralles N, Sastre AM, Aguilar M, Cox M (1992) Solvent extraction of zinc (II) by organophosphorus acids compounds from perchlorate solutions. Solvent Extr Ion Exch 10:51–68. https://doi.org/10.1080/07366299208918092

    Article  CAS  Google Scholar 

  55. Mellah A, Benachour D (2006) The solvent extraction of zinc and cadmium from phosphoric acid solution by di-2-ethyl hexyl phosphoric acid in kerosene diluent. Chem Eng Process 45:684–690. https://doi.org/10.1016/j.cep.2006.02.004

    Article  CAS  Google Scholar 

  56. Tait BK (1992) The extraction of some base metal ions by Cyanex 301, Cyanex 302, and their binary extractant mixtures with Aliquat 336. Solv Extr Ion Exch 10:799–809. https://doi.org/10.1080/07366299208918136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar Azizi.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was D. Panias.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, A., Nozhati, R.A. & Sillanpää, M. Solvent Extraction of Copper and Zinc from Sulfate Leach Solution Derived from a Porcelain Stone Tailings Sample with Chemorex CP-150 and D2EHPA. J. Sustain. Metall. 6, 250–258 (2020). https://doi.org/10.1007/s40831-020-00271-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00271-w

Keywords

Navigation