Skip to main content
Log in

On Textural Heredity of Ni-rich Ti–Ni alloy: Specific Features of Transformation and Tensile Behavior

  • TECHNICAL ARTICLE
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The comparative studies of Ni50.8Ti49.2 wires and strips (processed using cold drawing and rolling, respectively) were carried out using microstructural and thermal characterization, X-ray studies and tensile tests. The <111> axial texture in drawn wires remains stable during subsequent post-deformation annealing (PDA) in the temperature range of 430–800 °C. The texture of the as-deformed strips is characterized by the predominance of the component {001} <110>. After PDA at 800 °C, the formation of the {111} <112> recrystallization texture is observed along with the persisting texture component {001} <110>. The texture exhibits a pronounced effect on the sequence of martensitic transformations in the temperature range of PDA at 430–600 °C. After PDA at 800 °C, the calorimetric curves of wires and strips become similar. Both kinds of samples were tensile tested in the temperature range of − 50 °C ≤ T ≤  + 50 °C. The transformation yield stress in strips is lower if compared to wires, this relation does not depend on the microstructure (or PDA mode). The effect of texture on strength characteristics as well as ductility is ambiguous: their ratio between wires and strips depends on microstructure which is determined by PDA mode. The observed regularities are analyzed using structural and textural analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678. https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  2. Brailovski V, Prokoshkin S, Terriault P, Trochu F (2003) Shape memory alloy: fundamentals, modeling and applications. ETS Publ, Montreal

    Google Scholar 

  3. Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  4. Sabahi N, Chen W, Wang C-H, Kruzic JJ, Li XA (2020) Review on additive manufacturing of shape-memory materials for biomedical applications. JOM 72:1229–1253. https://doi.org/10.1007/s11837-020-04013-x

    Article  CAS  Google Scholar 

  5. Isaenkova MG, Perlovich YA, Fesenko VA, Dement’eva TI, Yu Gol’tsev V (2013) Formation of crystallographic texture in titanium nickelide single crystals during rolling. Russ Metall 2013:300–303. https://doi.org/10.1134/S0036029513040046

    Article  Google Scholar 

  6. Komarov V, Khmelevskaya I, Karelin R, Prokoshkin S, Zaripova M, Isaenkova M, Korpala G, Kawalla R (2019) Effect of biaxial cyclic severe deformation on microstructure and properties of Ti-Ni alloys. J Alloys Compd 797:842–848. https://doi.org/10.1016/j.jallcom.2019.05.127

    Article  CAS  Google Scholar 

  7. Ryklina EP, Polyakova KA, Resnina NN (2022) Role of structural heredity in aging induced microstructure and transformation behavior in Ni-rich titanium nickelide. Shap Mem Superelasticity. https://doi.org/10.1007/s40830-022-00378-x

    Article  Google Scholar 

  8. Poletika TM, Girsova SL, Lotkov AI, Kudryachov AN, Girsova NV (2021) Microstructure and multistage martensite transformation in nanocrystalline Ti-50.9Ni alloy. Metals 11(8):1262. https://doi.org/10.3390/met11081262

    Article  CAS  Google Scholar 

  9. Ryklina EP, Polyakova KA, Tabachkova NY, Resnina NN, Prokoshkin SD (2018) Effect of B2 austenite grain size and aging time on microstructure and transformation behavior of thermomechanically treated titanium nickelide. J Alloys Compd 764:626–638. https://doi.org/10.1016/j.jallcom.2018.06.102

    Article  CAS  Google Scholar 

  10. Kolobova AY, Ryklina EP, Prokoshkin SD, Inaekyan KE, Brailovskii V (2018) Study of the evolution of the microstructure and kinetics of martensitic transformations in a titanium nickelide upon isothermal annealing after hot helical rolling. Phys Metals Metallogr 119(2):134–145. https://doi.org/10.1134/S0031918X17120079

    Article  CAS  Google Scholar 

  11. Khalil-Allafi J, Eggeler G, Dlouhy A, Schmahl WW, Somsen Ch (2004) On the influence of heterogeneous precipitation on martensitic transformations in a Ni-rich NiTi shape memory alloy. Mater Sci Eng A 378:148–151. https://doi.org/10.1016/j.msea.2003.10.335

    Article  CAS  Google Scholar 

  12. Churakova AA, Gunderov DV, Dmitriev SV (2018) Microstructure transformation and physical and mechanical properties of ultrafine-grained and nanocrystalline TiNi alloys in multiple martensitic transformations B2–B19’. Materialwiss Werkstofftech 49(6):769–783. https://doi.org/10.1002/mawe.201700179

    Article  CAS  Google Scholar 

  13. Polyakova KA, Ryklina EP, Prokoshkin SD (2020) Effect of grain size and ageing-induced microstructure on functional characteristics of a Ti-50.7 at.% Ni alloy. Shap. Mem. Superelasticity 6(1):139–147. https://doi.org/10.1007/s40830-020-00269-z

    Article  Google Scholar 

  14. Stolyarov VV (2013) Influence of pulse current on deformation behavior during rolling and tension of Ti-Ni alloys. J Alloys Compd 577:274–276. https://doi.org/10.1016/j.jallcom.2012.04.022

    Article  CAS  Google Scholar 

  15. Lotkov AI, Koval YN, Grishkov VN, Zhapova DY, Timkin VN, Firstov GS (2015) Influence of deformation during warm rolling on martensitic transformation temperatures and the magnitude of superelasticity and shape memory effects in Ti49.2Ni50.8 (at %) alloy. Inorg Mater 6(5):498–505. https://doi.org/10.1134/S2075113315050093

    Article  Google Scholar 

  16. Liu Y, Xie ZL, Van Humbeeck J, Delaey L (1999) Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet. Acta mater 47(2):645–660. https://doi.org/10.1016/S1359-6454(98)00376-0

    Article  CAS  Google Scholar 

  17. Inoue H, Miwa N, Inakazu N (1996) Texture and shape memory strain in TiNi alloy sheets. Acta Mater 44:4825–4834. https://doi.org/10.1016/S1359-6454(96)00120-6

    Article  CAS  Google Scholar 

  18. LePage WS, Shaw JA, Daly SH (2021) Effects of texture on the functional and structural fatigue of a NiTi shape memory alloy. Int J of Solid Struct 221:150-164A. https://doi.org/10.1016/j.ijsolstr.2020.09.022

    Article  CAS  Google Scholar 

  19. Kudryashova A, Sheremetyev V, Lukashevich K, Cheverikina V, Inaekyan K, Galkin S, Prokoshkin S, Brailovski V (2020) Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti-18Zr-14Nb alloy for orthopedic implants. J Alloys Compd 843:156066. https://doi.org/10.1016/j.jallcom.2020.156066

    Article  CAS  Google Scholar 

  20. Kato H, Fukushima S, Sasaki K (2017) Shape memory effect and superelasticity of textured NiTi alloy wire. In: Sun Q, Matsui R, Takeda K, Pieczyska E (eds) Advances in shape memory materials: advanced structured materials, vol 73. Springer, Cham

    Chapter  Google Scholar 

  21. Laplanche G, Pfetzing-Micklich J, Eggeler G (2014) Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys. Acta Mater 68:19–31. https://doi.org/10.1016/j.actamat.2014.01.006

    Article  CAS  Google Scholar 

  22. Laplanche G, Pfetzing-Micklich J, Eggeler G (2014) Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys. Acta Mater 78:144–160. https://doi.org/10.1016/j.actamat.2014.05.061

    Article  CAS  Google Scholar 

  23. Laplanche G, Birk T, Schneider S, Frenzel J, Eggeler G (2017) Effect of temperature and texture on the reorientation of martensite variants in NiTi shape memory alloys. Acta Mater 27:143–152. https://doi.org/10.1016/j.actamat.2017.01.023

    Article  CAS  Google Scholar 

  24. Isaenkova MG, Perlovich YA, Fesenko VA, Zaripova MM (2019) Orientation dependence of functional properties of alloys with shape memory effect and superelasticity. Chelyab. Fiz.-Mat. Zh. 4(2):221–240. https://doi.org/10.24411/2500-0101-2019-14209

    Article  Google Scholar 

  25. Fesenko V, Perlovich Y, Isaenkova M (2015) The increased shape memory effect in rolled Ti-48%Ni-2%Fe single crystals. Mat. Tod. Proc. 2(3):751–754. https://doi.org/10.1016/j.matpr.2015.07.391

    Article  Google Scholar 

  26. Isaenkova M, Perlovich Y, Fesenko V (2016) Modern methods of experimental construction of texture complete direct pole figures by using X-ray data. IOP Conf. Ser.: Mater. Sci. Eng. 130:012055. https://doi.org/10.1088/1757-899X/130/1/012055

    Article  Google Scholar 

  27. LaboTex v. 3.0 by LaboSoft (Krakow, Poland). http://www.labosoft.com.pl (accessed 19 October 2022).

  28. Prokoshkin SD, Brailovski V, Inaekyan KE et al (2015) Thermomechanical treatment of TiNi intermetallicc-based shape memory alloys. In: Resnina N, Rubanik V (eds) Shape memory alloys: properties, technologies, opportunities. Trans Tech Publications, pp 260–341

    Google Scholar 

  29. Gorelik SS, Skakov YuA, Rastorguev LN (2002) Rentgenografiches kiy i elektronnoopticheskiy analiz [Xray and electronoptical analysis]. MISIS Publ, Moscow ((in Russian))

    Google Scholar 

  30. Poletika TM, Girsova SL, Lotkov AI, Krukovskii KV (2019) The evolution of the microstructure and system of Ti3Ni4 particles upon heat treatments of a Ti−50.9 at % Ni nanocrystalline alloy. Tech Phys 64(4):490–496. https://doi.org/10.1134/S1063784219040182

    Article  CAS  Google Scholar 

  31. Poletika TM, Girsova SL, Lotkov AI (2020) Ti3Ni4 precipitation features in heat-treated grain/subgrain nanomicrostructure in Ni-rich TiNi alloy. Intermet 127:106966. https://doi.org/10.1016/j.intermet.2020.106966

    Article  CAS  Google Scholar 

  32. Ryklina EP, Prokoshkin SD, Chernavina AA, Perevoshchikova NN (2010) Investigation on the influence of thermomechanical conditions of induction and microstructure on the shape memory effects in Ti-Ni alloy. Inorg Mat 1(3):188–194. https://doi.org/10.1134/S2075113310030032

    Article  Google Scholar 

  33. Ryklina EP, Polyakova KA, Murygin SR, Komarov VS, Resnina NN, Andreev VA (2022) Role of structural heredity in control of functional and mechanical characteristics of Ni-rich titanium nickelide. Phys. Metals Metallogr. 123(12):1226–1233. https://doi.org/10.1134/S0031918X22700053

    Article  CAS  Google Scholar 

  34. Novikov II, Zolotorevskiy VS, Portnoy VK et al (2009) Metallography, V: II, Heat treatment. Alloys, Moscow (in Russian)

  35. Inamura T, Shimizu R, Kim HY, Miyazaki S, Hosoda H (2016) Optimum rolling ratio for obtaining 001 recrystallization texture in Ti–Nb–Al biomedical shape memory alloy. Mater Sci Eng C 61:499–505. https://doi.org/10.1016/j.msec.2015.12.086

    Article  CAS  Google Scholar 

  36. Laplanche G, Kazuch A, Eggeler G (2015) Processing of NiTi shape memory sheets—microstructural heterogeneity and evolution of texture. J Alloys Compd 651:333–339. https://doi.org/10.1016/j.jallcom.2015.08.127

    Article  CAS  Google Scholar 

  37. Engler O, Randle V (2009) Introduction to texture analysis: macrotexture, microtexture, and orientation mapping, 2nd edn. CRC Press

    Book  Google Scholar 

  38. Gall K, Jesse Lim T, McDowell DL, Sehitoglu H, Chumlyakov YI (2000) The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi. Internat. J. Plast. 16(10–11):1189–1214. https://doi.org/10.1016/S0749-6419(00)00007-3

    Article  CAS  Google Scholar 

  39. Isaenkova M, Perlovich Y, Fesenko V, Dementyeva T (2013) Twinning in Ti-48%Ni-2%Fe single crystals under rolling. Mat Sci For 738–739:118–122. https://doi.org/10.4028/www.scientific.net/MSF.738-739.118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was carried out during the implementation of the strategic project, “Biomedical materials and bioengineering,” within the framework of the Strategic Academic Leadership Program “Priority 2030” at NUST MISIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Ryklina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to Shape Memory and Superelasticity selected from presentations at the 12th European Symposium on Martensitic Transformations (ESOMAT 2022) held September 5–9, 2022 at Hacettepe University, Beytepe Campus, Ankara, Turkey and has been expanded from the original presentation. The issue was organized by Prof. Dr. Benat Koҫkar, Hacettepe University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryklina, E.P., Polyakova, K.A., Murygin, S.R. et al. On Textural Heredity of Ni-rich Ti–Ni alloy: Specific Features of Transformation and Tensile Behavior. Shap. Mem. Superelasticity 9, 384–401 (2023). https://doi.org/10.1007/s40830-023-00435-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-023-00435-z

Keywords

Navigation