Skip to main content
Log in

The Effect of Texture on the Hall-Petch Relationship in Severely Drawn Ni-Co Microwires

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of texture on strength was investigated by altering the amount of cobalt in Ni-Co alloys. The purpose of incorporating Co was to reduce the stacking fault energy (SFE) of the alloy. A decrease in the SFE reduces the ease of cross-slip and enhances planar slip, leading to changes in texture during cold working. Three Ni-Co alloys (33, 50, and 60 wt pctCo) were wire drawn at room temperature in a specially designed setup to wire diameters of 500, 200, and 100 μm, corresponding to a drawing strain of 2.67, 4.05, and 5.88. EBSD analysis revealed a refinement in grain size with drawing strain as well as a transition from elongated to equiaxed grains in Ni-50 and Ni-60 Co alloys. Line profile analysis and bulk texture analysis showed that increasing drawing strain leads to a higher defect density, an increased <100> fiber fraction and a decreased <111> fiber fraction, with the trends increasing with an increase in Co content. Tensile tests on the drawn wires show that Ni-60 Co alloy has higher strength with superior ductility for all wire diameters. The HP coefficients for the annealed conditions, calculated by annealing Ni-Co wires of 100 μm diameter, was found to be independent of SFE. The HP coefficients in drawn conditions were found to be higher than in the annealed conditions. The activation volume measured from the multiple stress relaxations in the drawn wires ranged from 20 to 5.5 b3, suggesting that dislocation interactions remained the underlying operating deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  2. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  3. S. Floreen and J.H. Westbrook: Acta Met., 1969, vol. 17, pp. 1175–81.

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, S.E. Aleksandrov, and R.V. Goldshtein: Dokl. Phys., 2010, vol. 55, pp. 267–70.

    Article  CAS  Google Scholar 

  5. N. Hansen: Acta Met., 1977, vol. 25, pp. 863–69.

    Article  CAS  Google Scholar 

  6. R. Kamel and T.H. Youssef: Acta Met., 1967, vol. 15, pp. 965–70.

    Article  CAS  Google Scholar 

  7. F. Emeis, M. Peterlechner, and G. Wilde: Adv. Eng. Mater., 2020, vol. 22, pp. 1–10.

    Article  Google Scholar 

  8. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Philos. Mag., 1962, vol. 7, pp. 45–58.

    Article  CAS  Google Scholar 

  9. J. Nuttall and J. Nutting: Met. Sci., 1978, vol. 12, pp. 430–37.

    Article  CAS  Google Scholar 

  10. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  11. A. Arya, S. Suwas, C. Gérard, L. Signor, L. Thilly, and A.H. Chokshi: Acta Mater., 2021, vol. 221, pp. 1–10.

    Article  Google Scholar 

  12. G. Sambasiva Rao and Y.V.R.K. Prasad: Metall. Trans. A, 1982, vol. 13A, pp. 2219–26.

    Google Scholar 

  13. L. Feng, Y.Y. Ren, Y.H. Zhang, S. Wang, and L. Li: Metals (Basel), 2019, vol. 9, pp. 1–8.

    Google Scholar 

  14. S. Suwas and S. Mondal: Mater. Trans., 2019, vol. 60, pp. 1457–71.

    Article  CAS  Google Scholar 

  15. D.A. Hughes and W.D. Nix: Mater. Sci. Eng. A, 1989, vol. 122, pp. 153–72.

    Article  Google Scholar 

  16. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon: Appl. Phys. Lett., 2006, vol. 89, pp. 2004–07.

    Google Scholar 

  17. R.K. Ray: Acta Metall. Mater., 1995, vol. 43, pp. 3861–82.

    Article  CAS  Google Scholar 

  18. N. Hansen: Metall. Trans. A, 1985, vol. 16, pp. 2167–90.

    Article  Google Scholar 

  19. R.Z. Valiev, K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  20. Y. Cao, S. Ni, Liao, M. Song, and Y. Zhu: Mater. Sci. Eng. R, 2018, vol. 133, pp. 1–59.

    Article  Google Scholar 

  21. G.V. Nurislamova, R.K. Islamgaliev, and R.Z. Valiev: Mater. Sci. Forum, 2006, vol. 503–504, pp. 579–84.

    Article  Google Scholar 

  22. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: J. Miner. Mater. Mater. Soc., 2006, vol. 1, pp. 33–39.

    Article  Google Scholar 

  23. V.M. Segal: Mater. Sci. Eng. A, 2002, vol. 338, pp. 331–44.

    Article  Google Scholar 

  24. K. Neishi, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2002, vol. 325, pp. 54–58.

    Article  Google Scholar 

  25. K. Edalati, A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, and Zhu: Mater. Res. Lett., 2022, vol. 10, pp. 163–256.

    Article  CAS  Google Scholar 

  26. K. Edalati and Z. Horita: Acta Mater., 2011, vol. 59, pp. 6831–36.

    Article  CAS  Google Scholar 

  27. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107119.

    Article  CAS  Google Scholar 

  28. G. Bojjawar, S. Suwas, and A.H. Chokshi: Philos. Mag. Lett., 2022, vol. 102, pp. 1–4.

    Article  Google Scholar 

  29. D. Caillard and J.L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, 2003, vol. 8, p. 1.

    Google Scholar 

  30. W. Blum: Scripta Mater., 2018, vol. 146, pp. 27–30.

    Article  CAS  Google Scholar 

  31. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Acta Mater., 2009, vol. 57, pp. 1586–1601.

    Article  CAS  Google Scholar 

  32. Y.T. Zhu, X.Z. Liao, X.L. Wu, and J. Narayan: J. Mater. Sci., 2013, vol. 48, pp. 4467–75.

    Article  CAS  Google Scholar 

  33. A.Y. Chen, H.H. Ruan, J. Wang, H.L. Chan, Q. Wang, Q. Li, and J. Lu: Acta Mater., 2011, vol. 59, pp. 3697–3709.

    Article  CAS  Google Scholar 

  34. M.R. Staker and D.L. Holt: Acta Met., 1972, vol. 20, pp. 569–79.

    Article  CAS  Google Scholar 

  35. P. Landau, R.Z. Shneck, G. Makov, and A. Venkert: IOP Conf. Ser. Mater. Sci. Eng., 2009, vol. 3, pp. 1–6.

    Article  Google Scholar 

  36. W. Wu, M. Song, S. Ni, J. Wang, Y. Liu, B. Liu, and Liao: Sci. Rep., 2017, vol. 7, pp. 1–3.

    Article  Google Scholar 

  37. N.R. Tao and K. Lu: Scripta Mater., 2009, vol. 60, pp. 1039–43.

    Article  CAS  Google Scholar 

  38. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Prog. Mater. Sci., 2012, vol. 57, pp. 1–62.

    Article  CAS  Google Scholar 

  39. R. Jamaati and M.R. Toroghinejad: Adv. Mater. Res., 2014, vol. 1064, pp. 131–37.

    Article  Google Scholar 

  40. J.C. Eckert, J. Holzer, I.C.E. Krill, and W.L. Jhonson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    Article  CAS  Google Scholar 

  41. T.D. Shen and C.C. Koch: Mater. Sci. Forum, 1995, vol. 179–181, pp. 17–24.

    Article  Google Scholar 

  42. I.L. Dillamore and W.T. Roberts: Metall. Rev., 1965, vol. 10, pp. 271–380.

    Article  CAS  Google Scholar 

  43. H. Ahlborn, J. Grewen, and G. Wassermann: ZEITSCHRIFT FUR Met., 1963, vol. 55, pp. 588–99.

    Google Scholar 

  44. B.D. Cullity: Metall. Rev., 1958, vol. 10, pp. 271–371.

    Google Scholar 

  45. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Appl. Phys. Lett., 2008, vol. 92, pp. 23–25.

    Google Scholar 

  46. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–273.

    Article  CAS  Google Scholar 

  47. C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–43.

    Article  CAS  Google Scholar 

  48. N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801–06.

    Article  CAS  Google Scholar 

  49. A. Godon, J. Creus, S. Cohendoz, E. Conforto, Feaugas, P. Girault, and C. Savall: Scripta Mater., 2010, vol. 62, pp. 403–06.

    Article  CAS  Google Scholar 

  50. P. Ghosh, S. Van Petegem, H. Van Swygenhoven, and A.H. Chokshi: Mater. Sci. Eng. A, 2017, vol. 701, pp. 101–10.

    Article  CAS  Google Scholar 

  51. Z.H. Cao, L. Wang, K. Hu, Y.L. Huang, and X.K. Meng: Acta Mater., 2012, vol. 60, pp. 6742–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work was supported by science and engineering research board (SERB), department of science and technology, Government of India.

Competing interest

The authors declare that they have no known financial competing interests or personal relationships that could have influenced the work reported in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Bojjawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 492 KB)

Appendices

Appendix

See Figure A1.

Fig. A1
figure 7

Misorientation boundary fraction in drawn (a) Ni-33Co, (b) Ni-50Co, (c) Ni-60Co, and (d) Ni-Co wire of 100 μm diameter. Misorientation with < 5, 5-15, and > 15 deg are consider as low angle, medium, and high angle grain boundaries

Microstructure of annealed Ni-Co wires

See Figures A2, A3, A4, and Table AI.

Fig. A2
figure 8

Microstructures along with inverse pole figures for annealed Ni-33 Co wire of 100 µm with grain sizes (a) 3.93 ± 0.37 μm, (b) 4.45 ± 0.37 μm , and (c) 6.40 ± 0.47 μm after annealing

Fig. A3
figure 9

Microstructures along with inverse pole figures for annealed Ni-50 Co wire of 100 µm with grain sizes (a) 2.15 ± 0.11 μm, (b) 3.50 ± 0.24 μm and (c) 5.49 ± 0.44 μm

Fig. A4
figure 10

Microstructures along with inverse pole figures of annealed Ni-60 Co wire of 100 µm with grain sizes (a) 5.06 ± 0.32 μm, (b) 7.3 ± 0.67 μm, and (c) 9.66 ± 0.91 μm. (d) Standard inverse pole figure of pure Ni

Table AI Heat Treatment Details, Grain Sizes with Standard Error, Twin Fraction, and CSL Boundary Fraction in Annealed Ni-Co Wires

Tensile Test Data of Ni-Co Annealed Wires

See Figure A5.

Fig. A5
figure 11

Tensile test results for annealed Ni-Co alloys, (a) Ni-33Co, (b) Ni-50Co and (c) Ni-60 Co

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojjawar, G., Suwas, S. & Chokshi, A.H. The Effect of Texture on the Hall-Petch Relationship in Severely Drawn Ni-Co Microwires. Metall Mater Trans A 55, 232–246 (2024). https://doi.org/10.1007/s11661-023-07245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07245-z

Navigation