Skip to main content
Log in

The effect of e/a ratio on thermodynamic parameters and surface morphology of Cu–Al–Fe–X shape memory alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 09 July 2019

This article has been updated

Abstract

In this study, four Cu–Al–Fe–X shape memory alloys were produced by the arc melting technique, and the martensitic transformation temperatures, thermodynamic parameters, and the activation energy values were obtained. The activation energy values of the alloys were calculated as 666.36, 401.6, 82.94, and 226.22 kJ mol−1 for S1, S2, S3, and S4, respectively. High-temperature phase transitions and eutectoid point of the samples were examined by the differential thermal analysis method. The martensitic diffraction planes of the samples were found as 122, 0022, 1210, and 2012, and the crystallite size of the samples was calculated as 16.21, 20.20, 14.43, and 17.46, respectively. Lastly, optical micrograph observations revealed the morphology of the alloys and the variations in the grains and martensite structures. The e/a ratio of the alloys varied 1.47–1.51, and these values are in agreement with the values in literature to give shape memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 09 July 2019

    In the original publication of the article, the second author’s family name was incorrectly published.

References

  1. Altin E, Oz E, Erdem M, Demirel S, Aydogdu Y, Altin S. Thermoelectric and mechanical properties of Mg–Al–Sb alloys. J Mater Sci: Mater Electron. 2015;26(2):1023–32.

    CAS  Google Scholar 

  2. Lojen G, Anžel I, Kneissl A, Križman A, Unterweger E, Kosec B, et al. Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J Mater Process Technol. 2005;162:220–9.

    Article  Google Scholar 

  3. Izadinia M, Dehghani K. Structure and properties of nanostructured Cu–13.2 Al–5.1 Ni shape memory alloy produced by melt spinning. Trans Nonferr Metals Soc China. 2011;21(9):2037–43.

    Article  CAS  Google Scholar 

  4. Recarte V, Perez-Landazabal J, Rodrıguez P, Bocanegra E, No M, San Juan J. Thermodynamics of thermally induced martensitic transformations in Cu–Al–Ni shape memory alloys. Acta Mater. 2004;52(13):3941–8.

    Article  CAS  Google Scholar 

  5. Sobrero C, La Roca P, Roatta A, Bolmaro R, Malarría J. Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys. Mater Sci Eng, A. 2012;536:207–15.

    Article  CAS  Google Scholar 

  6. Kato H, Yasuda Y, Sasaki K. Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite. Acta Mater. 2011;59(10):3955–64.

    Article  CAS  Google Scholar 

  7. Canbay CA, Karaduman O, Özkul İ. Investigation of varied quenching media effects on the thermodynamical and structural features of a thermally aged CuAlFeMn HTSMA. Physica B. 2019;557:117–25.

    Article  CAS  Google Scholar 

  8. Mallik U, Sampath V. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng, A. 2008;481:680–3.

    Article  Google Scholar 

  9. Canbay CA, Aydoğdu A. Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim. 2013;113(2):731–7.

    Article  Google Scholar 

  10. Mallik U, Sampath V. Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd. 2008;459(1–2):142–7.

    Article  CAS  Google Scholar 

  11. Sharma M, Vajpai S, Dube R. Synthesis and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of powder preforms. Powder Metall. 2011;54(5):620–7.

    Article  CAS  Google Scholar 

  12. Massalski TB, Mizutani U. Electronic structure of Hume-Rothery phases. Prog Mater Sci. 1978;22(3–4):151–262.

    Article  CAS  Google Scholar 

  13. Massalski T, editor. Hume-Rothery rules re-visited. In: Science of alloys for the 21st century: a Hume-Rothery symposium celebration. Warrendale: TMS (The Minerals, Metals & Materials SOciety); 2000.

  14. Hume-Rothery W. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin. University of London; 1926.

  15. Mañosa L, Planes A, Ortín J, Martínez B. Entropy change of martensitic transformations in Cu-based shape-memory alloys. Phys Rev B. 1993;48(6):3611.

    Article  Google Scholar 

  16. Zhang Y, Evans J, Yang S. The prediction of solid solubility of alloys: developments and applications of Hume-Rothery’s rules. J Cryst Phys Chem. 2010;1(2):103–19.

    CAS  Google Scholar 

  17. Obradó E, Mañosa L, Planes A. Stability of the bcc phase of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1997;56(1):20.

    Article  Google Scholar 

  18. Pelegrina J, Ahlers M. The martensitic phases and their stability in Cu Zn and Cu Zn Al alloys—I. The transformation between the high temperature β phase and the 18R martensite. Acta Metall Mater. 1992;40(12):3205–11.

    Article  CAS  Google Scholar 

  19. Portier RA, Ochin P, Pasko A, Monastyrsky GE, Gilchuk AV, Kolomytsev VI, et al. Spark plasma sintering of Cu–Al–Ni shape memory alloy. J Alloy Compd. 2013;577:S472–7.

    Article  CAS  Google Scholar 

  20. Prado M, Decorte P, Lovey F. Martensitic transformation in Cu–Mn–Al alloys. Scr Metall Mater. 1995;33(6):877–83.

    Article  CAS  Google Scholar 

  21. Suresh N, Ramamurty U. Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys. J Alloy Compd. 2008;449(1–2):113–8.

    Article  CAS  Google Scholar 

  22. Kannarpady GK, Bhattacharyya A, Pulnev S, Vahhi I. The effect of isothermal mechanical cycling on Cu–13.3 Al–4.0 Ni (wt%) shape memory alloy single crystal wires. J Alloy Compd. 2006;425(1-2):112–22.

    Article  CAS  Google Scholar 

  23. Rodríguez-Aseguinolaza J, Ruiz-Larrea I, Nó ML, López-Echarri A, San Juan JM. Temperature memory effect in Cu–Al–Ni shape memory alloys studied by adiabatic calorimetry. Acta Mater. 2008;56(15):3711–22.

    Article  Google Scholar 

  24. Llopis J, Piqueras J, Bru L. On the equilibrium transition temperature of thermoelastic martensitic transformations. J Mater Sci. 1978;13(6):1364–6.

    Article  Google Scholar 

  25. Ahlers M. Phase stability of martensitic structures. Le Journal de Physique IV. 1995;5(C8):C8-71-C8-80.

    Google Scholar 

  26. Ortin J, Planes A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 1988;36(8):1873–89.

    Article  CAS  Google Scholar 

  27. Obradó E, Mañosa L, Planes A. Influence of composition and thermal treatments on the martensitic transition of Cu–Al–Mn alloys. Le Journal de Physique IV. 1997;7(C5):C5-233-C5-8.

    Google Scholar 

  28. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  29. Kokorin V, Kozlova L, Perekos A. On nanoparticles of the ferromagnetic Cu2MnAl phase in Cu–Al–Mn shape memory alloys. Mater Sci Eng, A. 2008;481:542–5.

    Article  Google Scholar 

  30. Husain S, Clapp P. Synthesis and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of powder performs. J Mater Sci. 1987;22:2351–6.

    Article  CAS  Google Scholar 

  31. Mallik U, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloy Compd. 2009;469(1–2):156–63.

    Article  CAS  Google Scholar 

  32. Matsushita K, Okamoto T, Okamoto T. Effects of manganese and ageing on martensitic transformation of Cu–Al–Mn alloys. J Mater Sci. 1985;20(2):689–99.

    Article  CAS  Google Scholar 

  33. Sutou Y, Kainuma R, Ishida K. Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater Sci Eng, A. 1999;273:375–9.

    Article  Google Scholar 

  34. Degeratu S, Rotaru P, Rizescu S, Bîzdoacă N. Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J Therm Anal Calorim. 2013;111(2):1255–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by FÜBAP, Project No: FF.18.21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Aksu Canbay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksu Canbay, C., Aziz, S., Özkul, İ. et al. The effect of e/a ratio on thermodynamic parameters and surface morphology of Cu–Al–Fe–X shape memory alloys. J Therm Anal Calorim 139, 823–829 (2020). https://doi.org/10.1007/s10973-019-08454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08454-8

Keywords

Navigation