Skip to main content
Log in

Production and Mechanical Properties of Cu-Al-Ni-Be Shape Memory Alloy Thin Ribbons Using a Cold Co-Rolled Process

  • Technical Articles
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

The use of shape memory alloys for micro-actuators constitutes a field of application in which copper–aluminum-based alloys find their usefulness because they can reach higher activation temperatures and are easier to produce than titanium-based alloys, particularly by the method proposed in this work. SMA tapes are a two-dimensional structure that offers many design options such as stamping, punching, and deep drawing, but they are also suitable for laser cutting, engraving, stamping, and EDM machining. This work has been made to study the manufacture of copper-based shape memory alloys (SMAs) using the cold co-rolling process also called the cold-roll bonding (CRB) process. In this process, a thin metal sandwich can be produced with a rolling machine. This sandwich consists of layers of CuNiBe master alloy and Al. During the rolling phase, the sandwich has no shape memory effect (SME) or superelastic effect (SE), so thin strips can be easily produced. After the rolling phase, the sandwich is subjected to a complex heat treatment to gain the SME. To validate this process to produce Cu-based SMAs, several alloys with different CuAlNiBe compositions have been tested. The SMAs obtained were characterized by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The martensitic transformation was studied by Differential Scanning Calorimetry (DSC) and SME and SE were studied by three-point bending tests. This work shows that the CRB is a good process for making a wide variety of Cu-based SMA ribbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pattor E, Berveiller M (1994) Technologie des Alliages à Mémoire de Forme. Hermès

  2. Elmay W, Patoor E, Gloriant T et al (2014) Improvement of superelastic performance of Ti-Nb binary alloys for biomedical applications. J Mater Eng Perform 23:2471–2476. https://doi.org/10.1007/s11665-014-0876-0

    Article  CAS  Google Scholar 

  3. Reis R, Gonzalez CH (2008) Fabrication of shape memory alloys using the plasma skull push/pull process. J Mater Process Technol 9:3657–3664. https://doi.org/10.1016/j.jmatprotec.2008.08.025

    Article  CAS  Google Scholar 

  4. Vajpai SK, Dube RK, Chatterjee P et al (2012) A novel powder metallurgy processing approach to prepare fine-grained Cu-Al-Ni shape memory alloy strips from elemental powders. Metall Mater Trans A. https://doi.org/10.1007/s11661-012-1081-0

    Article  Google Scholar 

  5. Agrawal A, Dube RK (2018) Methods of fabricating Cu-Al-Ni shape memory alloys. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.03.390

    Article  Google Scholar 

  6. Fischer M, Joguet D, Robin G et al (2016) In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2016.02.033

    Article  Google Scholar 

  7. Fischer M, Laheurte P, Acquier P et al (2017) Synthesis and characterization of Ti-27.5Nb alloy made by CLAD® additive manufacturing process for biomedical applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.02.060

    Article  Google Scholar 

  8. Lojen G, Anzel I, Kneissl A et al (2005) Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons. J Mater Process Technol 163:220–229. https://doi.org/10.1016/j.jmatprotec.2005.02.196

    Article  CAS  Google Scholar 

  9. Frémond M (1996) Shape memory alloy. In: Shape Memory Alloys. International Centre for Mechanical Sciences (Courses and Lectures), vol 351. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4348-3_1

  10. Cuniberti A, Montecinos S, Lovey FC (2009) Effect of γ2-phase precipitates on the martensitic transformation of a β-CuAlBe shape memory alloy. Intermetallics 17:435–440. https://doi.org/10.1016/j.intermet.2008.12.001

    Article  CAS  Google Scholar 

  11. Mukunthan K, Brown LC (1988) Preparation and properties of fine grain β-CuAlNi strain-memory alloys. Metall Trans A 19:2921–2929. https://doi.org/10.1007/BF02647718

    Article  Google Scholar 

  12. Kenji ADACHl, (1989) Formation of X phases and origin of grain refinement effect in Cu-Al-Ni shapememoryalloys added with titanium. ISIJ Int 29:378–387

    Article  Google Scholar 

  13. Kim JW, Roh DW, Lee ES, Kim YG (1990) Effects on microstructure and tensile properties of a zirconium addition to a Cu-Al-Ni shape memory alloy. Metall Trans A 21:741–744. https://doi.org/10.1007/BF02671945

    Article  Google Scholar 

  14. Vajpai SK, Dube RK, Sangal S (2011) Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from prealloyed powder by hot densification rolling of powder preforms. Metall Mater Trans A. https://doi.org/10.1007/s11661-011-0728-6

    Article  Google Scholar 

  15. Xu H, Song G, Mao X (2011) Influence of Be and Ni to Cu-Al alloy shape memory performance. Adv Mater Res 198:1258–1262. https://doi.org/10.4028/www.scientific.net/AMR.197-198.1258

    Article  CAS  Google Scholar 

  16. Zhu M, Ye X, Li C et al (2009) Preparation of single crystal CuAlNiBe SMA and its performances. J Alloy Compd 478:404–410. https://doi.org/10.1016/j.jallcom.2008.11.051

    Article  CAS  Google Scholar 

  17. Recarte V, Pérez-Sáeza R, Bocanegra E et al (1999) Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater Sci Eng A 275:380–384. https://doi.org/10.1016/S0921-5093(99)00302-0

    Article  Google Scholar 

  18. Recarte V, Pérez-Sáeza R, Bocanegra E et al (2001) Influence of Al and Ni concentration on the martensitic transformation in Cu-Al-Ni shape-memory alloys. Metall Mater Trans A. https://doi.org/10.1007/s11661-002-0379-8

    Article  Google Scholar 

  19. Delaey N, Mwamba N (1982) The influence on Ni-content on the Ms-temperature OF Cu-Zn-Al-Ni alloys. J Phys Colloques. https://doi.org/10.1051/jphyscol:19824102

    Article  Google Scholar 

  20. Belkahla S, Zufiiga HF, G G, (1993) Elaboration and characterization of new low temperature shape memory Cu-Al-Be alloys. Mater Sci Eng A 169:119–124

    Article  Google Scholar 

  21. Izadinia M, Dehghani K (2011) Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning. Trans Nonferrous Met Soc China 21:2037–2043. https://doi.org/10.1016/S1003-6326(11)60969-2

    Article  CAS  Google Scholar 

  22. Ergen S, Uzun O, Yilmaz F, Kiliçaslan MF (2013) Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys. Mater Charact 80:3–8. https://doi.org/10.1016/j.matchar.2013.03.010

    Article  CAS  Google Scholar 

  23. Bay N (1985) Bond strength in cold roll bonding. Ann CIRP 34:221–224

    Article  Google Scholar 

  24. Bay N (1983) Mechanisms producing metallic bonds in cold welding. Weld Res Suppl 62:137–142

    Google Scholar 

  25. Jamaati R, Toroghinejad MR (2011) Cold roll bonding bond strengths: review. Mater Sci Technol 27:1101–1108. https://doi.org/10.1179/026708310X12815992418256

    Article  CAS  Google Scholar 

  26. Ghalehbandi SM, Malaki M (2019) Accumulative roll bonding—a review. Appl Sci. https://doi.org/10.3390/app9173627

    Article  Google Scholar 

  27. Scarsbrookt G (1987) The martensitic transformation behaviour and stabilisation Cu-Zn-Al ribbons. Acta-Metallurgica 35:47–56

    Article  Google Scholar 

  28. Alizadeh M, Avazzadeh M (2019) Evaluation of Cu-26Zn-5Al shape memory alloy fabricated by accumulative roll bonding process. Mater Sci Eng A 757:88–94. https://doi.org/10.1016/j.msea.2019.04.092

    Article  CAS  Google Scholar 

  29. Alizadeh M, Dashtestaninejad MK (2016) Fabrication of manganese-aluminum bronze as a shape memory alloy by accumulative roll bonding process. JMADE 111:263–270. https://doi.org/10.1016/j.matdes.2016.08.074

    Article  CAS  Google Scholar 

  30. Moghaddam AO, Ketabchi M, Afrasiabi Y (2014) Accumulative roll bonding and post-deformation annealing of Cu-Al-Mn shape memory alloy. J Mater Eng Perform 23:4429–4435. https://doi.org/10.1007/s11665-014-1228-9

    Article  CAS  Google Scholar 

  31. Inoue H, Ishio M, Takasugi T (2003) Texture of TiNi shape memory alloy sheets produced by roll-bonding and solid phase reaction from elementary metals. Acta Materialia 51:6373–6383. https://doi.org/10.1016/j.actamat.2003.08.009

    Article  CAS  Google Scholar 

  32. Ye N, Ren X, Liang J (2020) Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulative roll bonding (ARB) at room temperature. Integr Med Res. https://doi.org/10.1016/j.jmrt.2020.03.077

    Article  Google Scholar 

  33. Funamizu Y, Watanabe K (1971) Interdiffusion in the Al–Cu System. Trans Jpn Inst Met 12(3):147–152. https://doi.org/10.2320/matertrans1960.12.147

    Article  CAS  Google Scholar 

  34. Bowles CQ (1992) Diffusion bonding of beryllium-copper alloys. J Mater Sc 27:49–54

    Article  Google Scholar 

  35. Schwarz SM, Kempshall BW, Giannuzzi LA (2003) Effects of diffusion induced recrystallization on volume diffusion in the copper-nickel system. Acta Materialia. https://doi.org/10.1016/S1359-6454(03)00082-X

    Article  Google Scholar 

  36. ASTM F 2004 (2008) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis

  37. ASTM F 2082 (2008) Standard Test Method for Determination of Transformation Temperature of Nickel- Titanium Shape Memory Alloys by Bend and Free Recovery

  38. Paul A, Van Dal MJH, Kodentsov AA, Van Loo FJJ (2004) The Kirkendall effect in multiphase diffusion. Acta Mater 52:623–630. https://doi.org/10.1016/j.actamat.2003.10.007

    Article  CAS  Google Scholar 

  39. Paul A (2004) The Kirkendall effect in solid state diffusion. Tech Univ Eindhoven. https://doi.org/10.6100/IR579448

    Article  Google Scholar 

  40. De Oliveira DF, de Lima JSG, Brito ICA et al (2010) Mechanical strength evaluation of a CuAlBe shape memory alloy under different thermal conditions. Mater Sci Forum 643:105–111. https://doi.org/10.4028/www.scientific.net/MSF.643.105

    Article  CAS  Google Scholar 

  41. Paper O, Soliman HN, Habib N (2014) Effect of ageing treatment on hardness of Cu-12.5 wt% Al shape memory alloy. Indian J Phys. https://doi.org/10.1007/s12648-014-0480-z

    Article  Google Scholar 

  42. Moreau F, Tidu A, Eberhardt A, Heizmann JJ (1995) Study of CuAlBe shape memory alloy by X-ray diffraction. J Phys IV 5:1–6

    Google Scholar 

  43. Malard B, Sittner P, Berveiller S, Patoor E (2012) Advances in martensitic transformations in Cu-based shape memory alloys achieved by in situ neutron and synchrotron X-ray diffraction methods. Comptes Rendus Phys 13:280–292. https://doi.org/10.1016/j.crhy.2011.12.003

    Article  CAS  Google Scholar 

  44. Sharma M, Vajpai SK, Dube RK (2010) Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from elemental powders via a novel powder metallurgy route. Metall and Mat Trans A. https://doi.org/10.1007/s11661-010-0351-y

    Article  Google Scholar 

  45. Zeifert BH, Salmones J, Cabanas-moreno JG, Calderon HA (2008) Raney-nickel catalysts produced by mechanical alloying. Rev Adv Mater Sci 18:633

    CAS  Google Scholar 

  46. Das N, Dey GK, Murty BS, Pabi SK (2005) On amorphization and nanocomposite formation in Al–Ni–Ti system by mechanical alloying. Pramana 65:831–840

    Article  CAS  Google Scholar 

  47. Cheniti H, Bouabdallah M, Patoor E (2009) High temperature decomposition of the B1 phase in a Cu–Al–Ni shape memory alloy. J Alloys Compd 476:420–424. https://doi.org/10.1016/j.jallcom.2008.09.003

    Article  CAS  Google Scholar 

  48. Al-humairi SSN (2019) Cu-based shape memory alloys: modified structures and their related properties. Recent Adv Metall Eng Electrodepos. https://doi.org/10.5772/intechopen.86193

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the SMART team of the LEM3 laboratory and Nimesis Technology. The authors want to thank sincerely our colleagues Stephane Boulard and Kévin Musseleck, Quentin and Nathan Peltier who provided help that strongly assisted this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Peltier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peltier, L., Perroud, O., Moll, P. et al. Production and Mechanical Properties of Cu-Al-Ni-Be Shape Memory Alloy Thin Ribbons Using a Cold Co-Rolled Process. Shap. Mem. Superelasticity 7, 344–352 (2021). https://doi.org/10.1007/s40830-021-00336-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00336-z

Keywords

Navigation