Skip to main content
Log in

Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

  • SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

We report recent progress in tailoring the thermal expansion (TE) of nanocrystalline (NC) NiTi by microstructure hierarchical design and control without composition change. Fabrication and characterization methods are outlined and preliminary results of both experiment and mechanism-based modeling are presented to understand and get insight into the unusual TE phenomena. The important roles of the intrinsic thermal expansion anisotropy of B19′ lattice and the suppression of phase transition by the extrinsic fabricated microstructure (cold rolling and annealing, grain size, defects, textures and volume fractions of nanoscaled B2 and B19′ lattices) in the overall macroscopic TE behaviors of the superelastic NC NiTi polycrystal SMAs are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kittel C (2004) Introduction to Solid State Physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  2. Roy R, Agrawal DK, McKinstry HA (1989) Very low thermal expansion coefficient materials. Annu Rev Mater Sci 19(1):59–81

    Article  Google Scholar 

  3. Chen J, Hu L, Deng J, Xing X (2015) Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 44(11):3522–3567

    Article  Google Scholar 

  4. Lind C (2012) Two decades of negative thermal expansion research: where do we stand? Materials 5(6):1125–1154

    Article  Google Scholar 

  5. van Schilfgaarde M, Abrikosov IA, Johansson B (1999) Origin of the Invar effect in iron–nickel alloys. Nature 400(6739):46–49

    Article  Google Scholar 

  6. Laboratories B, Technologies L, Hill M (2015) Pressure-induced amorphization and negative thermal expansion in ZrW2O8. Science 280:886–888

    Google Scholar 

  7. Kainuma R, Wang JJ, Omori T, Sutou Y, Ishida K (2002) Invar-type effect induced by cold-rolling deformation in shape memory alloys. Appl Phys Lett 80(23):4348–4350

    Article  Google Scholar 

  8. Sutou Y, Omori T, Wang JJ, Kainuma R, Ishida K (2004) Characteristics of Cu-Al-Mn-based shape memory alloys and their applications. Mater Sci Eng A 378(1):278–282

    Article  Google Scholar 

  9. Monroe JA, Gehring D, Karaman I, Arroyave R, Brown DW, Clausen B (2016) Tailored thermal expansion alloys. Acta Mater 102:333–341

    Article  Google Scholar 

  10. Research Project (Project No. 16209817) on “Negative and zero thermal expansion NiTi alloy by microstructure engineering” (2018–2020) funded by the Research Grant Council of Hong Kong SAR, China

  11. Ahadi A, Matsushita Y, Sawaguchi T, Sun QP, Tsuchiya K (2017) Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy. Acta Mater 124:79–92

    Article  Google Scholar 

  12. Ahadi A, Sun Q (2013) Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi-effects of grain size. Appl Phys Lett 103(2):021902

    Article  Google Scholar 

  13. Ahadi A, Sun Q (2014) Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater 76:186–197

    Article  Google Scholar 

  14. Sun Q, Aslan A, Li M, Chen M (2014) Effects of grain size on phase transition behavior of nanocrystalline shape memory alloys. Sci China Technol Sci 57(4):671–679

    Article  Google Scholar 

  15. Ahadi A, Sun Q (2015) Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater 90:272–281

    Article  Google Scholar 

  16. Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J (2014) Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 16(9):1140–1146

    Article  Google Scholar 

  17. Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52(1):137–147

    Article  Google Scholar 

  18. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2009) ESOMAT 2009–8th Eur. Symp Martensitic Transform 2030:1–7

    Google Scholar 

  19. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast 27(2):282–297

    Article  Google Scholar 

  20. Tsuchiya K, Inuzuka M, Tomus D, Hosokawa A, Nakayama H, Morii K, Todaka Y, Umemoto M (2006) Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation. Mater Sci Eng A 438:643–648

    Article  Google Scholar 

  21. Kim YH, Cho GB, Hur SG, Jeong SS, Nam TH (2006) Nanocrystallization of a Ti-50.0 Ni (at.%) alloy by cold working and stress/strain behavior. Mater Sci Eng A 438:531–535

    Article  Google Scholar 

  22. Waitz T, Tsuchiya K, Antretter T, Fischer FD (2009) Phase transformations of nanocrystalline martensitic materials. MRS Bull 34(11):814–821

    Article  Google Scholar 

  23. Delville R, Kasinathan S, Zhang Z, Humbeeck JV, James RD, Schryvers D (2010) Transmission electron microscopy study of phase compatibility in low hysteresis shape memory alloys. Phil Mag 90(1–4):177–195

    Article  Google Scholar 

  24. Tsuchiya K, Hada Y, Koyano T, Nakajima K, Ohnuma M, Koike T, Todaka Y, Umemoto M (2009) Production of TiNi amorphous/nanocrystalline wires with high strength and elastic modulus by severe cold drawing. Scripta Mater 60(9):749–752

    Article  Google Scholar 

  25. Peterlechner M, Waitz T, Karnthaler HP (2008) Nanocrystallization of NiTi shape memory alloys made amorphous by high-pressure torsion. Scripta Mater 59(5):566–569

    Article  Google Scholar 

  26. Nakayama H, Tsuchiya K, Umemoto M (2001) Crystal refinement and amorphisation by cold rolling in TiNi shape memory alloys. Scripta Mater 44(8):1781–1785

    Article  Google Scholar 

  27. Yu C, Aoun B, Cui L, Liu Y, Yang H, Jiang X, Cai S, Jiang D, Liu Z, Brown D, Ren Y (2016) Synchrotron high energy X-ray diffraction study of microstructure evolution of severely cold drawn NiTi wire during annealing. Acta Mater 115:35–44

    Article  Google Scholar 

  28. Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2010) Microstructure changes during non-conventional heat treatment of thin Ni–Ti wires by pulsed electric current studied by transmission electron microscopy. Acta Mater 58(13):4503–4515

    Article  Google Scholar 

  29. Prokoshkin S, Brailovski V, Dubinskiy S, Inaekyan K, Kreitcberg A (2016) Gradation of nanostructures in cold-rolled and annealed Ti-Ni shape memory alloys. Shape Mem Superelast 2(1):12–17

    Article  Google Scholar 

  30. Ko WS, Grabowski B, Neugebauer J (2015) Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Phys Rev B 92(13):134107

    Article  Google Scholar 

  31. Ko WS, Maisel SB, Grabowski B, Jeon JB, Neugebauer J (2017) Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys. Acta Mater 123:90–101

    Article  Google Scholar 

  32. Yu C, Sun QP, Kang GZ, (2017). Modeling martensite reorientation and the resulting zero and negative thermal expansion of shape memory alloys, unpublished work

  33. Duerig TW, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the financial support from the Hong Kong Research Grants Council (Project No. 16209817) and the Natural Science Foundation of China (Project No. 11532010) to the work of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Yu, C. & Kang, G. Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering. Shap. Mem. Superelasticity 4, 158–164 (2018). https://doi.org/10.1007/s40830-018-0151-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-018-0151-6

Keywords

Navigation