Skip to main content
Log in

Individual-Based Models for Incorporating Landscape Processes in the Conservation and Management of Aquatic Systems

  • REVIEW
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Ecological models can provide critical guidance to conservation programs both as problem-solving tools and by projecting future outcomes, specifically when time and resources limit directly testing alternative management approaches and scenarios. Due to the complexity of aquatic systems, environmental and climatic factors co-vary, multiple risk factors interact, and driving ecological and evolutionary processes are characterized by non-linear, higher-order interactions. Recent modeling advancements allow for better accounting of variation across time and space in ecological and genetic processes, but more progress is needed to inform conservation and address biodiversity decline. Modeling approaches that can explicitly incorporate the ongoing, rapid transformation of climate and landscapes and demogenetic and eco-evo consequences are useful for supporting and informing conservation planning strategies. In this narrative perspective, we present the history and role of individual-based models (IBMs) in aquatic systems to guide management.

Recent Findings

We present exemplary cases that cover (1) the conservation and management of native species in systems impacted by invasive species, (2) life history evolution impacts on the management of fisheries, (3) predictions of the interaction between changing environments and management decisions, and (4) testing factors that drive system dynamics in order to prioritize management decisions. We summarize potential platforms and software available to researchers and managers and discuss future opportunities and challenges.

Summary

While this review focuses on the use of IBMs in aquatic systems, we assert that this foundational knowledge is applicable across systems and encourages researchers and managers to consider incorporating individual-based modeling perspectives to inform conservation as appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeAngelis DL, Mooij WM. Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst. 2005;36(1):147–68.

    Article  Google Scholar 

  2. Knight AT, Cowling RM, Rouget M, Balmford A, Lombard AT, Campbell BM. Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conserv Biol. 2008;22(3):610–7.

    Article  PubMed  Google Scholar 

  3. Grimm V, Railsback SF. Individual-based modeling and ecology. Individual-based Modeling and Ecology: Princeton University Press; 2005.

    Book  Google Scholar 

  4. DeAngelis DL. Individual-based models and approaches in ecology: populations, communities and ecosystems. CRC Press. 2018;663.

  5. Bithell M, Brasington J, Richards K. Discrete-element, individual-based and agent-based models: tools for interdisciplinary enquiry in geography? Geoforum. 2008;39(2):625–42.

    Article  Google Scholar 

  6. Funtowicz S, Ravetz JR. Emergent complex systems. Futures. 1994;26(6):568–82.

    Article  Google Scholar 

  7. Day CC, McCann NP, Zollner PA, Gilbert JH, MacFarland DM. Temporal plasticity in habitat selection criteria explains patterns of animal dispersal. Behav Ecol. 2019;30(2):528–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Railsback SF, Harvey BC. Analysis of habitat-selection rules using an individual-based model. Ecology. 2002;83(7):1817–30.

    Google Scholar 

  9. Pitt WC, Box PW, Knowlton Frederick F. An individual-based model of canid populations: modelling territoriality and social structure. Ecol Model. 2003;166(1):109–21.

  10. Clark ME, Rose KA, Levine DA, Hargrove WW. Predicting climate change effects on Appalachian trout: combining GIS and individual-based modeling. Ecol Appl. 2001;11(1):161–78.

    Article  Google Scholar 

  11. Romero-Mujalli D, Jeltsch F, Tiedemann R. Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions. Reg Environ Change. 2019;19(1):1–12.

    Article  Google Scholar 

  12. Seaborn T, Andrews KR, Applestein CV, Breech TM, Garrett MJ, Zaiats A, et al. Integrating genomics in population models to forecast translocation success. Restor Ecol. 2021;29(4): e13395.

    Article  Google Scholar 

  13. Xuereb A, Rougemont Q, Tiffin P, Xue H, Phifer-Rixey M. Individual-based eco-evolutionary models for understanding adaptation in changing seas. Proc R Soc B Biol Sci. 2021;288(1962):20212006.

  14. Judson OP. The rise of the individual-based model in ecology. Trends Ecol Evol. 1994;9(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  15. Popovics G, Monostori L. An approach to determine simulation model complexity. Procedia CIRP. 2016;1(52):257–61.

    Article  Google Scholar 

  16. Lamarins A, Fririon V, Folio D, Vernier C, Daupagne L, Labonne J, et al. Importance of interindividual interactions in eco-evolutionary population dynamics: the rise of demo-genetic agent-based models. Evol Appl. 2022;15(12):1988–2001.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pierson JC, Beissinger SR, Bragg JG, Coates DJ, Oostermeijer JGB, Sunnucks P, et al. Incorporating evolutionary processes into population viability models. Conserv Biol. 2015;29(3):755–64.

    Article  PubMed  Google Scholar 

  18. Nathan LR, Mamoozadeh N, Tumas HR, Gunselman S, Klass K, Metcalfe A, et al. A spatially-explicit, individual-based demogenetic simulation framework for evaluating hybridization dynamics. Ecol Model. 2019;1(401):40–51.

    Article  Google Scholar 

  19. Messager ML, Olden JD. Individual-based models forecast the spread and inform the management of an emerging riverine invader. Divers Distrib. 2018;24(12):1816–29.

    Article  Google Scholar 

  20. Araya-Donoso R, Baty SM, Alonso-Alonso P, Sanín MJ, Wilder BT, Munguia-Vega A, et al. Implications of barrier ephemerality in geogenomic research. J Biogeogr. 2022;49(11):2050–63.

    Article  Google Scholar 

  21. DeAngelis DL, Grimm V. Individual-based models in ecology after four decades. F1000prime Rep. 2014;6.

  22. Almeida LZ, Sesterhenn TM, Rucinski DK, Höök TO. Nutrient loading effects on fish habitat quality: trade-offs between enhanced production and hypoxia in Lake Erie. North America Freshw Biol. 2022;67(5):784–800.

    Article  CAS  Google Scholar 

  23. Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. PNAS. 2002;99:7280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Botkin DB, Janak JF, Wallis JR. Some ecological consequences of a computer model of forest growth. J Ecol. 1972;60:849–72.

    Article  Google Scholar 

  25. Radchuk V, Kramer-Schadt S, Grimm V. Transferability of mechanistic ecological models is about emergence. Trends Ecol Evol. 2019;34(6):487–8.

    Article  PubMed  Google Scholar 

  26. DeAngelis DL, Yurek S. Spatially explicit modeling in ecology: a review. Ecosystems. 2017;20(2):284–300.

    Article  Google Scholar 

  27. Day CC, Landguth EL, Bearlin A, Holden ZA, Whiteley AR. Using simulation modeling to inform management of invasive species: a case study of eastern brook trout suppression and eradication. Biol Conserv. 2018;1(221):10–22.

    Article  Google Scholar 

  28. Schill DJ, Heindel JA, Campbell MR, Meyer KA, Mamer ERJM. Production of a YY male brook trout broodstock for potential eradication of undesired brook trout populations. North Am J Aquac. 2016;78(1):72–83.

    Article  Google Scholar 

  29. Day CC, Landguth EL, Simmons RK, Baker WP, Whiteley AR, Lukacs PM, et al. Simulating effects of fitness and dispersal on the use of Trojan sex chromosomes for the management of invasive species. J Appl Ecol. 2020;57(7):1413–25.

    Article  CAS  Google Scholar 

  30. Day CC, Landguth EL, Simmons RK, Baker WP, Whiteley AR, Lukacs PM, et al. Evaluation of management factors affecting the relative success of a brook trout eradication program using YY male fish and electrofishing suppression. Can J Fish Aquat Sci. 2021;78(8):1109–19.

    Article  Google Scholar 

  31. Dunlop ES, Enberg K, Jørgensen C, Heino M. Toward Darwinian fisheries management. Evol Appl. 2009;2(3):245–59.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hard JJ, Gross MR, Heino M, Hilborn R, Kope RG, Law R, et al. Evolutionary consequences of fishing and their implications for salmon. Evol Appl. 2008;1(2):388–408.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Conover DO, Munch SB. Sustaining fisheries yields over evolutionary time scales. Science. 2002;297(5578):94–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pinsky ML, Eikeset AM, Helmerson C, Bradbury IR, Bentzen P, Morris C, et al. Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. Proc Natl Acad Sci. 2021;118(15): e2025453118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang HY, Höök TO, Ebener MP, Mohr LC, Schneeberger PJ. Spatial and temporal variation of maturation schedules of lake whitefish (Coregonus clupeaformis) in the Great Lakes. Can J Fish Aquat Sci. 2008;65(10):2157–69.

    Article  Google Scholar 

  36. Laikre L, Ryman N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio. 1996;25(8):504–9.

    Google Scholar 

  37. Stokes TK, McGlade JM, Law R. The exploitation of evolving resources: proceedings of an international conference, held at Jülich, Germany, September 3–5, 1991. Springer Science & Business Media. 2013;270.

  38. Dunlop ES, Feiner ZS, Höök TO. Potential for fisheries-induced evolution in the Laurentian Great Lakes. J Gt Lakes Res. 2018;44(4):735–47.

    Article  Google Scholar 

  39. Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature. 2004;428(6986):932–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hsieh CH, Reiss CS, Hunter JR, Beddington JR, May RM, Sugihara G. Fishing elevates variability in the abundance of exploited species. Nature. 2006;443(7113):859–62.

  41. Feiner ZS, Chong SC, Knight CT, Lauer TE, Thomas MV, Tyson JT, et al. Rapidly shifting maturation schedules following reduced commercial harvest in a freshwater fish. Evol Appl. 2015;8(7):724–37.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunlop ES, Heino M, Dieckmann U. Eco-genetic modeling of contemporary life-history evolution. Ecol Appl. 2009;19(7):1815–34.

    Article  PubMed  Google Scholar 

  43. Dunlop ES, Shuter BJ, Dieckmann U. Demographic and evolutionary consequences of selective mortality: predictions from an eco-genetic model for smallmouth bass. Trans Am Fish Soc. 2007;136(3):749–65.

    Article  Google Scholar 

  44. Wang HY, Höök TO. Eco-genetic model to explore fishing-induced ecological and evolutionary effects on growth and maturation schedules. Evol Appl. 2009;2(3):438–55.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dunlop ES, Eikeset AM, Stenseth NC. From genes to populations: how fisheries-induced evolution alters stock productivity. Ecol Appl. 2015;25(7):1860–8.

    Article  PubMed  Google Scholar 

  46. Enberg K, Jørgensen C, Dunlop ES, Heino M, Dieckmann U. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evol Appl. 2009;2(3):394–414.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eikeset AM, Richter A, Dunlop ES, Dieckmann U, Stenseth NChr. Economic repercussions of fisheries-induced evolution. Proc Natl Acad Sci. 2013 Jul 23;110(30):12259–64.

  48. • Ayllón D, Nicola GG, Elvira B, Almodóvar A. Climate change will render size-selective harvest of cold-water fish species unsustainable in Mediterranean freshwaters. J Appl Ecol. 2021;58(3):562–75. This paper highlights using individual-based models for understanding body size evolution.

    Article  Google Scholar 

  49. Shugart HH, Smith TM, Post WM. The potential for application of individual-based simulation models for assessing the effects of global change. Annu Rev Ecol Syst. 1992;23(1):15–38.

    Article  Google Scholar 

  50. Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ. 2022;3(1):1–10.

    Article  Google Scholar 

  51. Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change. 2012;2(10):747–51.

    Article  Google Scholar 

  52. Beever EA, O’Leary J, Mengelt C, West JM, Julius S, Green N, et al. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv Lett. 2016;9(2):131–7.

    Article  Google Scholar 

  53. Seaborn T, Griffith D, Kliskey A, Caudill CC. Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. Glob Change Biol. 2021;27(12):2656–68.

    Article  CAS  Google Scholar 

  54. Forester BR, Murphy M, Mellison C, Petersen J, Pilliod DS, Van Horne R, et al. Genomics-informed delineation of conservation units in a desert amphibian. Mol Ecol. 2022;31(20):5249–69.

    Article  PubMed  PubMed Central  Google Scholar 

  55. DeMarche ML, Doak DF, Morris WF. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob Change Biol. 2019;25(3):775–93.

    Article  Google Scholar 

  56. Murdoch A, Yip DA, Cooke SJ, Mantyka-Pringle C. Evidence for the combined impacts of climate and landscape change on freshwater biodiversity in real-world environments: state of knowledge, research gaps and field study design recommendations. Curr Landsc Ecol Rep. 2022;7(4):68–82.

    Article  Google Scholar 

  57. Scheiner SM, Barfield M, Holt RD. The genetics of phenotypic plasticity. XVII. Response to climate change. Evol Appl. 2020;13(2):388–99.

  58. Sasaki MC, Dam HG. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob Change Biol. 2019;25(12):4147–64.

    Article  Google Scholar 

  59. Carja O, Plotkin JB. The evolutionary advantage of heritable phenotypic heterogeneity. Sci Rep. 2017;7(1):5090.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bay RA, Rose NH, Logan CA, Palumbi SR. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci Adv. 2017;3(11): e1701413.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kubisch A, Degen T, Hovestadt T, Poethke HJ. Predicting range shifts under global change: the balance between local adaptation and dispersal. Ecography. 2013;36(8):873–82.

    Article  Google Scholar 

  62. Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst. 2013;44(1):367–88.

    Article  Google Scholar 

  63. Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, et al. Applying genomics in assisted migration under climate change: framework, empirical applications, and case studies. Evol Appl. 2022;15(1):3–21.

    Article  CAS  PubMed  Google Scholar 

  64. Rykiel EJ Jr. Testing ecological models: the meaning of validation. Ecol Model. 1996;90(3):229–44.

    Article  Google Scholar 

  65. Augusiak J, Van den Brink PJ, Grimm V. Merging validation and evaluation of ecological models to ‘evaludation’: a review of terminology and a practical approach. Ecol Model. 2014;24(280):117–28.

    Article  Google Scholar 

  66. Hamby DM. A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess. 1994;32(2):135–54.

    Article  CAS  PubMed  Google Scholar 

  67. Cariboni J, Gatelli D, Liska R, Saltelli A. The role of sensitivity analysis in ecological modelling. Ecol Model. 2007;203(1):167–82.

    Article  Google Scholar 

  68. Railsback SF, Harvey BC, Kupferberg SJ, Lang MM, McBain S, Welsh HH. Modeling potential river management conflicts between frogs and salmonids. Can J Fish Aquat Sci. 2016;73(5):773–84.

    Article  Google Scholar 

  69. Beaudouin R, Monod G, Ginot V. Selecting parameters for calibration via sensitivity analysis: an individual-based model of mosquitofish population dynamics. Ecol Model. 2008;218(1):29–48.

    Article  Google Scholar 

  70. Rubin IN, Ellner SP, Kessler A, Morrell KA. Informed herbivore movement and interplant communication determine the effects of induced resistance in an individual-based model. J Anim Ecol. 2015;84(5):1273–85.

    Article  PubMed  Google Scholar 

  71. Breckling B, Middelhoff U, Reuter H. Individual-based models as tools for ecological theory and application: understanding the emergence of organisational properties in ecological systems. Ecol Model. 2006;194(1):102–13.

    Article  Google Scholar 

  72. Trapp SE, Day CC, Flaherty EA, Zollner PA, Smith WP. Modeling impacts of landscape connectivity on dispersal movements of northern flying squirrels (Glaucomys sabrinus griseifrons). Ecol Model. 2019;24(394):44–52.

    Article  Google Scholar 

  73. Lindenschmidt KE, Fleischbein K, Baborowski M. Structural uncertainty in a river water quality modelling system. Ecol Model. 2004;204(3–4):289–300.

    Google Scholar 

  74. Baggio RA, Araujo SBL, Ayllón D, Boeger WA. Dams cause genetic homogenization in populations of fish that present homing behavior: evidence from a demogenetic individual-based model. Ecol Model. 2018;24(384):209–20.

    Article  Google Scholar 

  75. Grimm V, Ayllón D, Railsback SF. Next-generation individual-based models integrate biodiversity and ecosystems: yes we can, and yes we must. Ecosystems. 2017;20(2):229–36.

    Article  Google Scholar 

  76. Balkenhol N, Cushman SA, Waits LP, Storfer A. Current status, future opportunities, and remaining challenges in landscape genetics. In: Landscape genetics. John Wiley & Sons, Ltd; 2015 p. 247–56. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118525258.ch14.

  77. Keller D, Holderegger R, van Strien MJ, Bolliger J. How to make landscape genetics beneficial for conservation management? Conserv Genet. 2015;16(3):503–12.

    Article  Google Scholar 

  78. Day CC, Landguth EL, Simmons RK. CDMetaPOP 2: a multispecies, eco-evolutionary simulation framework for landscape genetics and connectivity. Ecography. 2023;e06566.

  79. Hollowed AB, Bax N, Beamish R, Collie J, Fogarty M, Livingston P, et al. Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES J Mar Sci. 2000;57(3):707–19.

    Article  Google Scholar 

  80. Latour RJ, Brush MJ, Bonzek CF. Toward ecosystem-based fisheries management. Fisheries. 2003;28(9):10–22.

    Article  Google Scholar 

  81. van Nes EH, Lammens EHRR, Scheffer M. PISCATOR, an individual-based model to analyze the dynamics of lake fish communities. Ecol Model. 2002;152(2):261–78.

    Google Scholar 

  82. Shin YJ, Cury P. Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquat Living Resour. 2001;14(2):65–80.

    Article  Google Scholar 

  83. Campbell MD, Rose K, Boswell K, Cowan J. Individual-based modeling of an artificial reef fish community: effects of habitat quantity and degree of refuge. Ecol Model. 2011;222(23):3895–909.

    Article  Google Scholar 

  84. Giacomini HC, De Marco P, Petrere M. Exploring community assembly through an individual-based model for trophic interactions. Ecol Model. 2009;220(1):23–39.

    Article  Google Scholar 

  85. Rose KA, Curchitser E, Fiechter J, Hedstrom K, Haynie A, Bernal M, et al. Simulating the effects of zooplankton food web dynamics on the sardine fishery using an individual-based multi-species model of the California Current.

  86. Baveco H, Focks A, Laender FD. Individual-based simulation models of multi-species systems under the impact of chemicals: complex dynamics can lead to.

  87. Sable SE, Rose KA. A comparison of individual-based and matrix projection models for simulating yellow perch population dynamics in Oneida Lake, New York, USA. Ecol Model. 2008;215(1):105–21.

    Article  Google Scholar 

  88. Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol. 2021;30(1):62–82.

    Article  PubMed  Google Scholar 

  89. Carreras C, Ordóñez V, Zane L, Kruschel C, Nasto I, Macpherson E, et al. Population genomics of an endemic Mediterranean fish: differentiation by fine scale dispersal and adaptation. Sci Rep. 2017;7(1):43417.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu Y, Zhou Z, Pan Y, Zhao J, Bai H, Chen B, et al. GWAS identified candidate variants and genes associated with acute heat tolerance of large yellow croaker. Aquaculture. 2021;15(540): 736696.

    Article  Google Scholar 

  91. Yoshida GM, Yáñez JM. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data. Evol Appl. 2022;15(4):537–52.

    Article  CAS  PubMed  Google Scholar 

  92. Frank BM, Baret PV. Simulating brown trout demogenetics in a river/nursery brook system: the individual-based model DemGenTrout. Ecol Model. 2013;10(248):184–202.

    Article  Google Scholar 

  93. Seaborn T, Goldberg CS. Integrating genetics and metapopulation viability analysis to inform translocation efforts for the last northern leopard frog population in Washington State, USA. J Herpetol. 2020;54(4):465–75.

    Article  Google Scholar 

  94. Benestan LM, Ferchaud AL, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25(13):2967–77.

    Article  PubMed  Google Scholar 

  95. Pertoldi C, Topping C. Impact assessment predicted by means of genetic agent-based modeling. Crit Rev Toxicol. 2004;34(6):487–98.

    Article  CAS  PubMed  Google Scholar 

  96. Moustakas A, Evans MR. Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models. PLoS One. 2013;8(8): e71125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pracana R, Burns R, Hammond RL, Haller BC, Wurm Y. Individual-based modeling of genome evolution in haplodiploid organisms. Genome Biol Evol. 2022;14(5):evac062.

  98. Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, et al. Remote sensing big data computing: challenges and opportunities. Future Gener Comput Syst. 2015;1(51):47–60.

    Article  Google Scholar 

  99. Yang C, Clarke K, Shekhar S, Tao CV. Big spatiotemporal data analytics: a research and innovation frontier. Int J Geogr Inf Sci. 2020;34(6):1075–88.

    Article  Google Scholar 

  100. • Oomen RA, Kuparinen A, Hutchings JA. Consequences of single-locus and tightly linked genomic architectures for evolutionary responses to environmental change. J Hered. 2020;111(4):319–32. This paper includes evolution in projections of climate change.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Haefner JW. Parallel computers and individual-based models: an overview. In: Individual-based models and approaches in ecology. Chapman and Hall/CRC; 1992.

  102. Yao X, Li G, Xia J, Ben J, Cao Q, Zhao L, et al. Enabling the big Earth observation data via cloud computing and DGGS: opportunities and challenges. Remote Sens. 2020;12(1):62.

    Article  Google Scholar 

  103. Heppenstall A, Crooks A, Malleson N, Manley E, Ge J, Batty M. Future Developments in Geographical Agent-Based Models: Challenges and Opportunities. Geogr Anal. 2021;53(1):76–91.

    Article  PubMed  Google Scholar 

  104. • Wood ZT, Palkovacs EP, Olsen BJ, Kinnison MT. The importance of eco-evolutionary potential in the Anthropocene. Bioscience. 2021;71(8):805–19. This review paper covers eco-evolutionary feedbacks, which may be one of the areas best explored with individual-based models.

    Article  Google Scholar 

  105. Samson E, Hirsch PE, Palmer SCF, Behrens JW, Brodin T, Travis JMJ. Early engagement of stakeholders with individual-based modeling can inform research for improving invasive species management: the round goby as a case study. Front Ecol Evol. 2017;5.

  106. Wood KA, Stillman RA, Goss-Custard JD. Co-creation of individual-based models by practitioners and modellers to inform environmental decision-making. J Appl Ecol. 2015;52(4):810–5.

    Article  Google Scholar 

  107. Walters CJ. Adaptive management of renewable resources [Internet]. Basingstoke: Macmillan Publishers Ltd; 1986. 384 p. Available from: https://iiasa.dev.local/.

  108. Walters CJ, Holling CS. Large-scale management experiments and learning by doing. Ecology. 1990;71(6):2060–8.

    Article  Google Scholar 

  109. Williams BK. Adaptive management of natural resources—framework and issues. J Environ Manage. 2011;92(5):1346–53.

    Article  PubMed  Google Scholar 

  110. Gregory R, Failing L, Harstone M, Long G, McDaniels T, Ohlson D. Structured decision making: a practical guide to environmental management choices. John Wiley & Sons; 2012.

    Book  Google Scholar 

  111. Bach A, Minderman J, Bunnefeld N, Mill AC, Duthie AB. Intervene or wait? A model evaluating the timing of intervention in conservation conflicts adaptive management under uncertainty. Ecol Soc. 2022; Available from: https://eprints.ncl.ac.uk

  112. Railsback SF, Gard M, Harvey BC, White JL, Zimmerman JKH. Contrast of degraded and restored stream habitat using an individual-based salmon model. North Am J Fish Manag. 2013;33(2):384–99.

    Article  Google Scholar 

  113. Bart J. Acceptance criteria for using individual-based models to make management decisions. Ecol Appl. 1995;5(2):411–20.

    Article  Google Scholar 

  114. Ostrom E. A general framework for analyzing sustainability of social-ecological systems. Science. 2009;325(5939):419–22.

    Article  CAS  PubMed  Google Scholar 

  115. Synes NW, Brown C, Palmer SCF, Bocedi G, Osborne PE, Watts K, et al. Coupled land use and ecological models reveal emergence and feedbacks in socio-ecological systems. Ecography. 2019;42(4):814–25.

    Article  Google Scholar 

  116. Jossie E, Seaborn T, Baxter CV, Morey B. Using social-ecological models to explore stream connectivity outcomes for stakeholders and Yellowstone cutthroat trout. Ecol Appl. 2023;In Review.

  117. Elsawah S, Guillaume JHA, Filatova T, Rook J, Jakeman AJ. A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: from cognitive maps to agent-based models. J Environ Manage. 2015;15(151):500–16.

    Article  Google Scholar 

  118. Lindkvist E, Wijermans N, Daw TM, Gonzalez-Mon B, Giron-Nava A, Johnson AF, et al. Navigating complexities: agent-based modeling to support research, governance, and management in small-scale fisheries. Front Mar Sci. 202;6.

  119. Rammer W, Seidl R. Coupling human and natural systems: simulating adaptive management agents in dynamically changing forest landscapes. Glob Environ Change. 2015;1(35):475–85.

    Article  Google Scholar 

  120. Huston M, DeAngelis D, Post W. New computer models unify ecological theory: computer simulations show that many ecological patterns can be explained by interactions among individual organisms. Bioscience. 1988;38(10):682–91.

    Article  Google Scholar 

  121. Grimm V. Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Model. 1999;115(2):129–48.

    Article  Google Scholar 

  122. Uchmański J, Grimm V. Individual-based modelling in ecology: what makes the difference? Trends Ecol Evol. 1996;11(10):437–41.

    Article  PubMed  Google Scholar 

  123. Bauer AL, Beauchemin CAA, Perelson AS. Agent-based modeling of host–pathogen systems: the successes and challenges. Inf Sci. 2009;179(10):1379–89.

    Article  Google Scholar 

  124. Robertson D, editor. Eco-logic: logic-based approaches to ecological modelling. Cambridge, Mass: MIT Press; 1991. 243 p. (Logic programming).

  125. •• Grimm V, Railsback SF, Vincenot CE, Berger U, Gallagher C, Deangelis DL, et al. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J Artif Soc Soc Simul. 2020;23(2). Available from: http://eprints.bournemouth.ac.uk/33918/. This paper summarizes key steps to reproducible modeling research.

  126. Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW. Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS One. 2018;13(9): e0196974.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mims MC, Day CC, Burkhart JJ, Fuller MR, Hinkle J, Bearlin A, et al. Simulating demography, genetics, and spatially explicit processes to inform reintroduction of a threatened char. Ecosphere. 2019;10(2): e02589.

    Article  Google Scholar 

  128. Brauer CJ, Beheregaray LB. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol Appl. 2020;13(10):2857–69.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Galloway J, Cresko WA, Ralph P. A few stickleback suffice for the transport of alleles to new lakes. G3-Genes Genom Genet. 2020;10(2):505–14.

  130. • Dominguez Almela V, Palmer SCF, Andreou D, Gillingham PK, Travis JMJ, Britton JR. Predicting the outcomes of management strategies for controlling invasive river fishes using individual-based models. J Appl Ecol. 2021;58(11):2427–40. This paper highlights using individual-based models to understand invasive species under different management strategies.

    Article  Google Scholar 

  131. Bocedi G, Palmer SCF, Pe’er G, Heikkinen RK, Matsinos YG, Watts K, et al. RangeShifter: a platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods Ecol Evol. 2014;5(4):388–96.

  132. • Snyder MN, Schumaker NH, Dunham JB, Ebersole JL, Keefer ML, Halama J, et al. Tough places and safe spaces: can refuges save salmon from a warming climate? Ecosphere. 2022;13(11):e4265. This paper highlights addressing climate change with individual-based model that was custom built for the system.

  133. Piou C, Prévost E. A demo-genetic individual-based model for Atlantic salmon populations: model structure, parameterization and sensitivity. Ecol Model. 2012;24(231):37–52.

    Article  Google Scholar 

  134. Landguth EL, Muhlfeld CC, Luikart G. CDFISH: an individual-based, spatially-explicit, landscape genetics simulator for aquatic species in complex riverscapes. Conserv Genet Resour. 2012;4(1):133–6.

    Article  Google Scholar 

  135. Landguth EL, Muhlfeld CC, Waples RS, Jones L, Lowe WH, Whited D, et al. Combining demographic and genetic factors to assess population vulnerability in stream species. Ecol Appl. 2014;24(6):1505–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the invitation to submit this review for consideration. In addition, Steve Railsback provided very helpful feedback prior to the peer review process. We would also like to thank anonymous reviewers.

Funding

This publication was made possible by the NSF Idaho and National EPSCoR Programs and by the National Science Foundation under award numbers OIA-1757324 and OIA-1826801.

Author information

Authors and Affiliations

Authors

Contributions

All authors helped lead the design, strucure, and writing of the main text and edited the manuscript. S.G. prepared Fig. 1. C.C.D prepared Fig. 2.

Corresponding author

Correspondence to Travis Seaborn.

Ethics declarations

Conflict of Interest

Travis Seaborn and Stephanie Galla received financial support from the National Science Foundation grants listed under funding. All other authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seaborn, T., Day, C.C., Galla, S.J. et al. Individual-Based Models for Incorporating Landscape Processes in the Conservation and Management of Aquatic Systems. Curr Landscape Ecol Rep 8, 119–135 (2023). https://doi.org/10.1007/s40823-023-00089-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40823-023-00089-8

Keywords

Navigation