Skip to main content
Log in

Magnetohydrodynamic nonlinear thermal convection nanofluid flow over a radiated porous rotating disk with internal heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nonlinear convective flow and heat transfer characteristics are analyzed between stationary nonporous and porous rotating disks utilizing graphene nanoparticles in a water and ethylene glycol base fluid. Heat transfer characteristics are analyzed via incorporating thermal radiation and heat absorption/generation. The governing fluid equations are computed numerically using Runge–Kutta based shooting technique after employing appropriate transformations. Characteristics of sundry variables are elaborated graphically as well as through the construction of Table for water base and ethylene glycol based graphene nanoparticles. It is observed that improvements in nonlinear convection variable owing to temperature and heat generation variable improve wall friction in radial direction. Improvement in Hartman number decreased wall friction in radial and tangential directions along with Nusselt number in graphene/ethylene glycol and graphene/water nanofluid. Ethylene glycol based graphene nanofluid takes less time for execution as compared to water based nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(u,v,w\) :

Velocity components of fluid phase in \(\,\,r,\phi ,z\) directions \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(T\) :

Temperature of the nanofluid \(\left(K \right)\)

\(T_{1}\) :

Temperature at fixed impermeable disk \(\left(K \right)\)

\(T_{2}\) :

Temperature at rotating porous disk \(\left(K \right)\)

\(\upsilon\) :

Kinematic viscosity \(\left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right)\)

\(g\) :

Acceleration due to gravity \(\left( {{\text{m}}\,{\text{s}}^{ - 2} } \right)\)

\(\rho_{{{\text{nf}}}}\) :

Density of the nanofluid \(\left( {{\text{kg}}\,{\text{m}}^{ -3} } \right)\)

\(\rho_{{\text{f}}}\) :

Density of the base fluid \(\left( {{\text{kg}}\,{\text{m}}^{ -3} } \right)\)

\(\rho_{{\text{s}}}\) :

Density of the nanoparticles \(\left( {{\text{kg}}\,{\text{m}}^{ -3} } \right)\)

\(\mu_{f}\) :

Dynamic viscosity of the base fluid \(\left( {{\text{kg}}\;{\text{ms}}^{ - 1} } \right)\)

\(\mu_{{{\text{nf}}}}\) :

Dynamic viscosity of the nanofluid \(\left( {{\text{kg}}\;{\text{ms}}^{ - 1} } \right)\)

\(c_{{{\text{pf}}}}\) :

Specific heat capacity at constant pressure of the fluid (\({\text{J}}\,{\text{kg}}^{ - 1} {\text{K}}^{ - 1}\))

\(k_{{{\text{nf}}}}\) :

Thermal conductivity (\({\text{W}}\,{\text{m}}^{ - 1} {\text{K}}^{ - 1}\))

\(\left( {\rho c_{\rm{p}} } \right)_{\rm{nf}}\) :

Effective heat capacity \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} {\text{K}}^{ - 1} } \right)\)

\((\rho c_{{\text{p}}} )_{{\text{p}}}\) :

Effective heat capacity of the particle medium (\({\text{kg}}\,{\text{m}}^{ - 3} {\text{K}}^{ - 1}\))

\(\alpha_{{{\text{nf}}}}\) :

Diffusion coefficient \(({\text{m}}^{2} {\text{s}}^{ - 1} )\)

\(\nu_{{{\text{nf}}}}\) :

Kinematic viscosity (\({\text{m}}^{2} {\text{s}}^{ - 1}\))

\(\sigma^{*}\) :

Stefan–Boltzmann constant \(({\text{W}}\;{\text{m}}\,{\text{K}}^{ - 4} )\)

\(\sigma\) :

Electrical conductivity \(\left( {{\text{S}}\,{\text{m}}^{ - 1} } \right)\)

\(k^{*}\) :

Mean absorption coefficient

\(M\) :

Hartman Number

\(\phi\) :

Nano particle volume fraction

\(\Pr\) :

Prandtl number

\(R\) :

Radiation parameter

\(Q\) :

Heat generation/absorption coefficient

\(\zeta\) :

Similarity variable

\(C_{{\text{f}}}\) :

Skin friction coefficient

\(Nu_{{\text{x}}}\) :

Local Nusselt number

\({\text{Re}}\) :

Local Reynolds number

\(l\) :

Distance between two disks

\(\Omega \,\) :

Angular speed of the rotating disk

\(\varepsilon\) :

Measure of the angular speed or momentum of the of the rotating porous disk

\(W\) :

Suction velocity at which fluid is withdrawn from the rotating porous disk (Injection if \(W\) is negative.)

\(\alpha_{1}\) :

Thermal buoyancy variable

\(\beta_{{\text{t}}}\) :

Nonlinear convection variable

\(\delta\) :

Heat generation variable

References

  1. Wu W, Xiao B, Hu J, Yuan S, Hu C. Experimental investigation on the air-liquid two-phase flow inside a grooved rotating-disk system: flow pattern maps. Appl Therm Eng. 2018;133:33–8. https://doi.org/10.1016/j.applthermaleng.2018.01.031.

    Article  Google Scholar 

  2. Rizwan UH, Noor NFM, Khan ZH. Numerical simulation of water based magnetite nanoparticles between two parallel disks. Adv Powder Technol. 2016. https://doi.org/10.1016/j.apt.2016.05.020.

    Article  Google Scholar 

  3. Turkyilmazoglu M. Fluid flow and heat transfer over a rotating and vertically moving disk. Phys Fluids. 2018. https://doi.org/10.1063/1.5037460.

    Article  Google Scholar 

  4. Turkyilmazoglu M. Flow and heat simultaneously induced by two stretchable rotating disks. Phys Fluids. 2016. https://doi.org/10.1063/1.4945651.

    Article  Google Scholar 

  5. Turkyilmazoglu M. Purely analytic solutions of magnetohydrodynamic swirling boundary layer flow over a porous rotating disk. Comput Fluids. 2010;39:793–9. https://doi.org/10.1016/j.compfluid.2009.12.007.

    Article  Google Scholar 

  6. Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.004.

    Article  CAS  Google Scholar 

  7. Rashidi MM, Pour SAM, Hayat T, Obaidat S. Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput Fluids. 2012;54:1–9. https://doi.org/10.1016/j.compfluid.2011.08.001.

    Article  Google Scholar 

  8. Qayyum S, Ijaz M, Hayat T, Alsaedi A. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk. Phys B. 2018;534:173–83. https://doi.org/10.1016/j.physb.2018.01.044.

    Article  CAS  Google Scholar 

  9. Pourmehran O, Sarafraz MM, Rahimi-gorji M, Ganji DD. Rheological behaviour of various metal-based nano-fluids between rotating discs. J Taiwan Inst Chem Eng. 2018. https://doi.org/10.1016/j.jtice.2018.04.004.

    Article  Google Scholar 

  10. Attia HA. Steady flow over a rotating disk in porous medium with heat transfer. Nonlinear Anal Model Control. 2009;14:21–6.

    Article  Google Scholar 

  11. Mellor GL, Chapple PJ, Stokes VK. On the flow between a rotating and a stationary disk. J Fluid Mech. 1968;31:95–112. https://doi.org/10.1017/S0022112068000054.

    Article  Google Scholar 

  12. Kavenuke DP, Massawe E, Makinde OD. Modeling laminar flow between a fixed impermeable disk and a porous rotating disk. Afr J Math Comput Sci Res. 2009;2:157–62.

    Google Scholar 

  13. Awati VB, Makinde OD, Jyoti M. Computer-extended series solution for laminar flow between a fixed impermeable disk and a porous rotating disk. Eng Comput. 2018;35:1655–74. https://doi.org/10.1108/EC-01-2017-0021.

    Article  Google Scholar 

  14. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Pub Fed. 1995;231:99–106.

    CAS  Google Scholar 

  15. Sarafraz MM, Hormozi F, Kamalgharibi M. Sedimentation and convective boiling heat transfer of CuO-water/ethylene glycol nanofluids. Heat Mass Transf. 2014;50(9):1237–49.

    Article  CAS  Google Scholar 

  16. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F, Nikkhah V. Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf. 2017;53(1):265–75.

    Article  CAS  Google Scholar 

  17. Kamalgharibi M, Hormozi F, Zamzamian SAH, Sarafraz MM. Experimental studies on the stability of CuO nanoparticles dispersed in different base fluids: influence of stirring, sonication and surface active agents. Heat Mass Transf. 2016;52(1):55–62.

    Article  CAS  Google Scholar 

  18. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    Article  CAS  Google Scholar 

  19. Imtiaz M, Hayat T, Alsaedi A, Ahmad B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. Int J Heat Mass Transf. 2016;101:948–57. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.114.

    Article  CAS  Google Scholar 

  20. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F. Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Period Polytech Chem Eng. 2016;60(2):106–22.

    CAS  Google Scholar 

  21. Hayat T, Rashid M, Ijaz M, Alsaedi A. Melting heat transfer and induced magnetic field effects on flow of water based nano fluid over a rotating disk with variable thickness. Results Phys. 2018;9:1618–30. https://doi.org/10.1016/j.rinp.2018.04.054.

    Article  Google Scholar 

  22. Bachok N, Ishak A, Pop I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys B. 2011;406:1767–72. https://doi.org/10.1016/j.physb.2011.02.024.

    Article  CAS  Google Scholar 

  23. Ellahi R, Zeeshan A, Hussain F, Safaei MR. Simulation of cavitation of spherically shaped hydrogen bubbles through a tube nozzle with stenosis. Int J Numer Meth Heat Fluid Flow. 2020. https://doi.org/10.1108/HFF-04-2019-0311.

    Article  Google Scholar 

  24. Ellahi R, Hussain F, Abbas SA, Sarafraz MM, Goodarzi M, Shadloo MS. Study of two-phase Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip. Inventions. 2020;5:6.

    Article  Google Scholar 

  25. Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2019;140:1121–45.

    Article  Google Scholar 

  26. Maleki H, Alsarraf J, Moghanizadeh A, Hajabdollahi H, Safaei MR. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary Zonditions. J Cent South Univ. 2019;26(5):1099–115.

    Article  CAS  Google Scholar 

  27. Maleki H, Safaei MR, Alrashed AA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135(3):1655–66.

    Article  CAS  Google Scholar 

  28. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09372-w.

    Article  Google Scholar 

  29. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139:2623–31.

    Article  CAS  Google Scholar 

  30. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2019;139(4):2585–99.

    Article  Google Scholar 

  31. Yousefzadeh S, Rajabi H, Ghajari N, Sarafraz MM, Akbari OA, Goodarzi M. Numerical investigation of mixed convection heat transfer behavior of nanofluid in a cavity with different heat transfer areas. J Therm Anal Calorim. 2019;77:195–205.

    Google Scholar 

  32. Arasteh H, Mashayekhi R, Goodarzi M, Motaharpour SH, Dahari M, Toghraie D. Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid. J Therm Anal Calorim. 2019;138(2):1461–76.

    Article  CAS  Google Scholar 

  33. Sarafraz MM, Tlili I, Tian Z, Khan AR, Safaei MR. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim. 2019;139(4):2413–22.

    Article  Google Scholar 

  34. Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135(3):1643–54.

    Article  CAS  Google Scholar 

  35. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    Article  CAS  Google Scholar 

  36. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94.

    Article  CAS  Google Scholar 

  37. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587.

    Article  Google Scholar 

  38. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems—potential of nanofluids. J Mol Liq. 2019;289:111049.

    Article  CAS  Google Scholar 

  39. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  Google Scholar 

  40. Jaćimović Ž, Kosović M, Kastratović V, Holló BB, Szécsényi KM, Szilágyi IM, Rodić M. Synthesis and characterization of copper, nickel, cobalt, zinc complexes with 4-nitro-3-pyrazolecarboxylic acid ligand. J Therm Anal Calorim. 2018;133(1):813–21.

    Article  Google Scholar 

  41. Justh N, Berke B, László K, Szilágyi IM. Thermal analysis of the improved Hummers, synthesis of graphene oxide. J Therm Anal Calorim. 2018;131(3):2267–72.

    Article  CAS  Google Scholar 

  42. Holló BB, Ristić I, Budinski-Simendić J, Cakić S, Szilágyi IM, Szécsényi KM. Synthesis, spectroscopic and thermal characterization of new metal-containing isocyanate-based polymers. J Therm Anal Calorim. 2018;132(1):215–24.

    Article  Google Scholar 

  43. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Calorim. 2019;136(1):199–209.

    Article  CAS  Google Scholar 

  44. Jeyaseelan TR, Azhagesan N, Pethurajan V. Thermal characterization of NaNO3/KNO3 with different concentrations of Al2 O3 and TiO2 nanoparticles. J Therm Anal Calorim. 2019;136(1):235–42.

    Article  Google Scholar 

  45. Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy. 2019;142:364–72.

    Article  CAS  Google Scholar 

  46. Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1929.

    Article  CAS  Google Scholar 

  47. Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei MR, Goodarzi M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities. Appl Sci. 2019;9(10):2101.

    Article  CAS  Google Scholar 

  48. Sarafraz MM, Yang B, Pourmehran O, Arjomandi M, Ghomashchi R. Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel. Int Commun Heat Mass Transfer. 2019;107:24–33.

    Article  CAS  Google Scholar 

  49. Raju CSK, Saleem S, Al-Qarni MM, Upadhya SM. Unsteady nonlinear convection on Eyring–Powell radiated flow with suspended graphene and dust particles. Microsyst Technol. 2019;25(4):1321–31.

    Article  CAS  Google Scholar 

  50. Mamatha Upadhya S, Mahesha A, Raju CSK, Shehzad SA, Abbasi FM. Flow of Eyring-Powell dusty fluid in a deferment of aluminum and ferrous oxide nanoparticles with Cattaneo-Christov heat flux. Powder Technol. 2018;340:68–766.

    Article  CAS  Google Scholar 

  51. Mamatha SU, Raju CSK, Putta Durga P, Ajmath KA, Oluwole Daniel M. Exponentially decaying heat source on MHD tangent hyperbolic two-phase flows over a flat surface with convective conditions. Defect Diff Forum. 2018;387:286–95.

    Article  Google Scholar 

  52. Upadhya SM, Raju CSK, Saleem S, Alderremy AA. Modified Fourier heat flux on MHD flow over stretched cylinder filled with dust, Graphene and silver nanoparticles. Results Phys. 2018;9:1377–85. https://doi.org/10.1016/j.rinp.2018.04.038.

    Article  Google Scholar 

  53. Mamatha Upadhya S, Raju CSK. Unsteady flow of Carreau fluid in a suspension of dust and graphene nanoparticles with Cattaneo–Christov heat flux. J Heat Transf. 2018;140(9):092401.

    Article  Google Scholar 

  54. Sharma RP, Makinde OD, Animasaun IL. Buoyancy effects on MHD unsteady convection of a radiating chemically reacting fluid past a moving porous vertical plate in a binary mixture. Defect Diff Forum. 2018;387:308–18.

    Article  Google Scholar 

  55. Santhosh HB, Raju CSK. Unsteady Carreau radiated flow in a deformation of graphene nanoparticles with heat generation and convective conditions. J Nanofluids. 2018;7(6):1130–7.

    Article  Google Scholar 

  56. Nayak MK, Shaw S, Makinde OD, Chamkha AJ. Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable riga plate with internal heating: Bungiorno model. J Nanofluids. 2019;8(1):51–62.

    Article  Google Scholar 

  57. Eid MR, Makinde OD. Solar radiation effect on a magneto nanofluid flow in a porous medium with chemically reactive species. Int J Chem React Eng. 2018. https://doi.org/10.1515/ijcre-2017-0212.

    Article  Google Scholar 

  58. Stewartson K. On the flow between two rotating coaxial disks. Proc Comb Phil Soc. 1953;49:333–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhya, S.M., Devi, R.L.V.R., Raju, C.S.K. et al. Magnetohydrodynamic nonlinear thermal convection nanofluid flow over a radiated porous rotating disk with internal heating. J Therm Anal Calorim 143, 1973–1984 (2021). https://doi.org/10.1007/s10973-020-09669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09669-w

Keywords

Navigation