Skip to main content
Log in

New Fractional Modelling and Simulations of Prey–Predator System with Mittag–Leffler Kernel

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Predator–prey models are regarded as the structural blocks of the bio- and ecosystems as biomasses are headed by their resource masses. During the current investigation, we examine the impact of a contagious disease on the growth of ecological varieties. We study a non-integer-order predator–prey system by applying the Atangana–Baleanu–Caputo derivative. We use an effective techniqueto get the numerical solutions and to discover the system’s dynamical behavior using different values of fractional order which indicates that how how the proposed scheme is suitable to solve the dynamical systems containing the derivatives with non-singular kernels. Moreover, the existence of the results is given utilizing the fixed-point theorem. Also, diagrams via numerical simulations of the approximate solutions are shown in different dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Availability of data and materials

No date used in this work.

References

  1. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology, vol. 57. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  2. Murray, J.D.: Mathematical Biology, 3rd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  3. Dubey, B., Upadhyay, R.K.: Persistence and extinction of one-prey and two-predator system. Nonlinear Anal. Model. Control 9(4), 307–329 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gakkhar, S., Singh, B., Naji, R.K.: Dynamical behavior of two predators competing over a single prey. BioSystems 90(3), 808–817 (2007)

    Article  Google Scholar 

  5. Kar, T.K., Batabyal, A.: Persistence and stability of a two prey one predator. Int. J. Eng. Sci. Technol. 2(2), 174–190 (2010)

    Article  Google Scholar 

  6. Samanta, G.P.: Analysis of a delay nonautonomous predator–prey system with disease in the prey. Nonlinear Anal. Model. Control 15(1), 97–108 (2010). https://doi.org/10.15388/NA.2010.15.1.14367

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, W., Chen, L.: A predator–prey system with stage-structure for predator. Comput. Math. Appl. 33(8), 83–91 (1997). https://doi.org/10.1016/j.mcm.2006.04.001

    Article  MathSciNet  Google Scholar 

  8. Bernard, O., Souissi, S.: Qualitative behavior of stages structure d populations: application to structural validation. J. Math. Biol. 37(4), 291–308 (1998). https://doi.org/10.1007/s002850050130

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, X., Chen, L., Neumann, A.U.: Th stage-structured predator–prey model and optimal harvesting policy. Math. Biosci. 168(2), 201–210 (2000). https://doi.org/10.1016/S0025-5564(00)00033-X

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, J., Chen, L., Wang, W.: Th effect of dispersal on population growth with stage-structure. Comput. Math. Appl. 39(1–2), 91–102 (2000). https://doi.org/10.1016/S0898-1221(99)00316-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Cui, J., Takeuchi, Y.: A predator–prey system with a stage structure for the prey. Math. Comput. Model. 44(11–12), 1126–1132 (2006). https://doi.org/10.1016/j.mcm.2006.04.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, S., Beretta, E.: A stage-structured predator–prey model of Beddington–DeAngelis type. SIAM J. Appl. Math. 66(4), 1101–1129 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chattopadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27, 609–631 (1989). https://doi.org/10.1007/bf00276947

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, L., Ma, Z., Hethcote, H.W.: Four predator prey models with infectious diseases. Math. Comput. Model. 34(7–8), 849–858 (2001). https://doi.org/10.1016/S0895-7177(01)00104-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, X., Cui, J., Shi, X., et al.: A modified Leslie–Gower predator–prey model with prey infection. J. Appl. Math. Comput. 33, 471–487 (2010). https://doi.org/10.1007/s12190-009-0298-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Sweilam, N.H., Khader, M.M., Nagy, A.M.: Numerical solution of two- sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 235, 2832–2841 (2011). https://doi.org/10.1016/j.cam.2010.12.002

    Article  MathSciNet  MATH  Google Scholar 

  18. Duarte, J., Januario, C., Martins, N., Sardanyes, J.: Chaos and crises in a model for cooperative hunting a symbolic dynamics approach. Chaos 19(4), 043102 (2009). https://doi.org/10.1063/1.3243924

    Article  Google Scholar 

  19. Capone, F., Carfora, M.F., De Luca, R., Torcicollo, I.: Turing patterns in a reaction–diffusion system modeling hunting cooperation. Math. Comput. Simul. 165, 172–180 (2019). https://doi.org/10.1016/j.matcom.2019.03.010

    Article  MathSciNet  MATH  Google Scholar 

  20. Cosner, C., DeAngelis, D., Ault, J., Olson, D.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1), 65–75 (1999). https://doi.org/10.1006/tpbi.1999.1414

    Article  MATH  Google Scholar 

  21. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator–prey model. Ecol. Complex. 39, 100770 (2019). https://doi.org/10.1016/j.ecocom.2019.100770

    Article  MATH  Google Scholar 

  22. Ryu, K., Ko, W.: Asymptotic behavior of positive solutions to a predator–prey elliptic system with strong hunting cooperation in predators. Phys. A 531, 121726 (2019). https://doi.org/10.1016/j.physa.2019.121726

    Article  MathSciNet  MATH  Google Scholar 

  23. Sen, D., Ghorai, S., Banerjee, S.M.: Allee effect in prey versus hunting cooperation on predator—enhancement of stable coexistence. Int. J. Bifurc. Chaos 29(6), 1950081 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singh, T., Dubey, R., Mishra, V.N.: Spatial dynamics of predator–prey system with hunting cooperation in predators and type I functional response. AIMS Math. 5, 673–684 (2020). https://doi.org/10.3934/math.2020045

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, D., Song, Y., Li, C.: Stability and turing patterns in a predator-prey model with hunting cooperation and Allee effect in prey population. Int. J. Bifurc. Chaos 30(09), 2050137 (2020). https://doi.org/10.1142/S0218127420501370

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, D., Zhao, M.: Qualitative analysis for a diffusive predator–prey model with hunting cooperative. Phys. A 515, 299–309 (2019). https://doi.org/10.1016/j.physa.2018.09.176

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, S., Jia, D., Zhang, T., Yuan, S.: Pattern dynamics in a diffusive predator–prey model with hunting cooperations. Chaos Solitons Fractals 130, 109428 (2020). https://doi.org/10.1016/j.chaos.2019.109428

    Article  MathSciNet  MATH  Google Scholar 

  28. Yavuz, M., Sene, N.: Stability analysis and numerical computation of the fractional predator–prey model with the harvesting rate. Fractal Fract. 4(3), 35 (2020). https://doi.org/10.3390/fractalfract4030035

    Article  Google Scholar 

  29. Hashemi, M.S., PartoHaghighi, M., Bayram, M.: On numerical solution of the time-fractional diffusion-wave equation with the fictitious time integration method. Eur. Phys. J. Plus 134(10), 488 (2019). https://doi.org/10.1140/epjp/i2019-12845-1

    Article  Google Scholar 

  30. Inc, M., Parto-Haghighi, M., Akinlar, M.A., Chu, Y.M.: New numerical solutions of fractional-order Korteweg-de Vries equation. Results Phys. 19, 103326 (2019). https://doi.org/10.1016/j.rinp.2020.103326

    Article  Google Scholar 

  31. Inc, M., Partohaghighi, M., Akinlar, M.A., Agarwal, P., Chu, Y.M.: New solutions of fractional-order Burger–Huxley equation. Results Phys. 18, 103290 (2019). https://doi.org/10.1016/j.rinp.2020.103290

    Article  Google Scholar 

  32. Partohaghighi, M., Ink, M., Baleanu, D., Moshoko, S.P.: Ficitious time integration method for solving the time fractional gas dynamics equation. Therm. Sci. 23(Suppl. 6), 2009–2016 (2019). https://doi.org/10.2298/TSCI190421365P

    Article  Google Scholar 

  33. Ahmad, Zubair, Ali, Farhad, Khan, Naveed, Khan, Ilyas: Dynamics of the fractal-fractional model of a new chaotic system of integrated circuit with Mittag–Leffler kernel. Chaos Solitons Fractals 153, 111602 (2021). https://doi.org/10.1016/j.chaos.2021.111602

    Article  MathSciNet  Google Scholar 

  34. Murtaza, S., Kumam, P., Ahmad, Z., Sitthithakerngkiet, K., Ali, I.E.: Finite Difference simulation of fractal-fractional model of electro-osmotic flow of Casson fluid in a micro channel. IEEE Access 10, 26681–26692 (2022). https://doi.org/10.1109/ACCESS.2022.3148970

    Article  Google Scholar 

  35. Ahmad, Zubair, Bonanomi, Giuliano, di Serafino, Daniela, Giannino, Francesco: Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag–Leffler kernel. Appl. Numer. Math. 185, 446–465 (2023). https://doi.org/10.1016/j.apnum.2022.12.004

    Article  MathSciNet  Google Scholar 

  36. Ahmad, Zubair, Arif, Muhammad, Ali, Farhad, Khan, Ilyas, SooppyNisar, Kottakkaran: A report on COVID-19 epidemic in Pakistan using SEIR fractional model. Sci. Rep. 17;10(1), 22268 (2020). https://doi.org/10.1038/s41598-020-79405-9

    Article  Google Scholar 

  37. Ahmad, Z., El-Kafrawy, S.A., Alandijany, T.A., Giannino, F., Mirza, A.A., El-Daly, M.M., Faizo, A.A., Bajrai, L.H., Kamal, M.A.: A global report on the dynamics of COVID-19 with quarantine and hospitalization: a fractional order model with non-local kernel. Comput. Biol. Chem. 98, 107645 (2022). https://doi.org/10.1016/j.compbiolchem.2022.107645

    Article  Google Scholar 

  38. Toufik, M., Atangana, A.: New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. Eur. Phys. J. Plus 132, 444 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their valuable comments.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution.

Corresponding author

Correspondence to Ali Akgül.

Ethics declarations

Ethics approval and consent to participate

There is no ethics issue in this work.

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partohaghighi, M., Akgül, A. New Fractional Modelling and Simulations of Prey–Predator System with Mittag–Leffler Kernel. Int. J. Appl. Comput. Math 9, 43 (2023). https://doi.org/10.1007/s40819-023-01523-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01523-5

Keywords

Navigation