Skip to main content
Log in

Unsteady Magneto-Hydrodynamic Flow Through Saturated Porous Medium with Thermal Non-equilibrium and Radiation Effects

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The effect of thermal non-equilibrium on two-dimensional magnetohydrodynamics flow through a sparsely packed porous medium bounded by two vertical plates has been examined using finite difference approximation. The Rosseland approximation for thermal radiation is incorporated as a pertinent parameter in the liquid phase thermal energy equation. The numerical solutions are used to analyze the effects of Brinkman number, viscosity ratio, porous parameter, magnetic parameter, heat transfer coefficient, and thermal radiation parameter on velocity and temperature profiles. Also, the skin-friction coefficient and Nusselt number are determined at the left boundary of the channel, and results are presented via plots. The results show that the Brinkman number, porous parameter, magnetic parameter, and thermal radiation parameter opposes the liquid flow and enhances the temperature distribution, whereas the interphase heat transfer coefficient, the ratio of thermal diffusivities shows the opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field

Bi :

Biot number

\(c_p\) :

Specific heat at constant pressure

d :

Channel width

\(\mathbf {g}\) :

Accelaration due to gravity

h :

Interphase heat transfer coefficient

H :

Dimensionless interphase heat transfer coefficient

k :

Thermal conductivity

\(k^*\) :

Mean absorption coefficient

K :

Permeability

M :

Magnetic parameter

Nr :

Thermal radiation parameter

Nu :

Nusselt number

p :

Fluid pressure

Pr :

Prandtl number

Ra :

Thermal Rayleigh number

T :

Temperature

t :

Time

uU :

Flow velocity

xy :

Coordinate elements

\(\beta \) :

Thermal expansion coefficient

\(\gamma \) :

Porosity-modified ratio of thermal conductivities

\(\Gamma \) :

Ratio of thermal diffusitivities

\(\Lambda \) :

Viscosity ratio

\(\mu \) :

Absolute viscosity

\(\epsilon \) :

Porosity (\(0<\epsilon <1\))

\(\tau \) :

Dimensionless time

\(\rho \) :

Liquid density

\(\sigma ^*\) :

Stefan–Boltzman constant

\(\sigma ^2\) :

Porous parameter

\(\theta \) :

Dimensionless temperature

0:

Reference value

l :

Liquid

s :

Solid

References

  1. Attia, H.A.: Transient MHD flow and heat transfer between two parallel plates with temperature dependent viscosity. Mech. Res. Commun. 26(1), 115–121 (1999)

    Article  Google Scholar 

  2. Attia, H.A., Kotb, N.A.: MHD flow between two parallel plates with heat transfer. Acta Mech. 117(1–4), 215–220 (1996)

    Article  Google Scholar 

  3. Chaudhary, R.C., Jain, A.: Combined heat and mass transfer effects on MHD free convection flow past an oscillating plate embedded in porous medium. Roman. J. Phys. 52(5–7), 505–524 (2007)

    Google Scholar 

  4. Cramer, K.R., Pai, S.I.: Magnetofluid Dynamics for Engineers and Applied Physicists. McGraw-Hill Book Company, New York (1973)

    Google Scholar 

  5. Dehghan, M., Mirzaei, D.: Meshless local Petrov–Galerkin (mlpg) method for the unsteady magnetohydrodynamic ( MHD) flow through pipe with arbitrary wall conductivity. Appl. Numer. Math. 59(5), 1043–1058 (2009)

    Article  MathSciNet  Google Scholar 

  6. Eegunjobi, A.S., Makinde, O.D., Jangili, S.: Unsteady MHD chemically reacting and radiating mixed convection slip flow past a stretching surface in a porous medium. In: Makinde, O.D. (ed.) Defect and Diffusion Forum, vol. 377, pp. 200–210. Trans Tech Publ, Zurich (2017)

    Google Scholar 

  7. Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37(3), 1451–1467 (2013)

    Article  MathSciNet  Google Scholar 

  8. Elmars, B., Yu, M., Ozols, R.: Heat and Mass Transfer in MHD Flows, vol. 3. World Scientific, Singapore (1987)

    Google Scholar 

  9. England, W.G., Emery, A.F.: Thermal radiation effects on the laminar free convection boundary layer of an absorbing gas. J. Heat Transf. 91(1), 37–44 (1969)

    Article  Google Scholar 

  10. Gupta, S.C., Singh, B.: Unsteady magnetohydrodynamic flow in a circular pipe under a transverse magnetic field. Phys. Fluids 13(2), 346–352 (1970)

    Article  Google Scholar 

  11. Israel-Cookey, C., Ogulu, A., Omubo-Pepple, V.B.: Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int. J. Heat Mass Transf. 46(13), 2305–2311 (2003)

    Article  Google Scholar 

  12. Khader, M.M., Megahed, A.M.: Numerical simulation using the finite difference method for the flow and heat transfer in a thin liquid film over an unsteady stretching sheet in a saturated porous medium in the presence of thermal radiation. J. King Saud Univ. Eng. Sci. 25(1), 29–34 (2013)

    Article  Google Scholar 

  13. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-dependent Problems, vol. 98. Siam, Philadelphia (2007)

    Book  Google Scholar 

  14. Liu, I.C., Megahed, A.M.: Numerical study for the flow and heat transfer in a thin liquid film over an unsteady stretching sheet with variable fluid properties in the presence of thermal radiation. J. Mech. 28(2), 291–297 (2012)

    Article  Google Scholar 

  15. Makinde, O.D., Khan, W.A., Culham, J.R.: MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. Int. J. Heat Mass Transf. 93, 595–604 (2016)

    Article  Google Scholar 

  16. Makinde, O.D., Khan, Z.H., Ahmad, R., Haq, R.U.I., Khan, W.A.: Unsteady MHD flow in a porous channel with thermal radiation and heat source/sink. Int. J. Appl. Comput. Math. 5(3), 59 (2019)

    Article  MathSciNet  Google Scholar 

  17. Makinde, O.D., Mhone, P.Y.: Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Roman. J. Phys. 50(9/10), 931 (2005)

    Google Scholar 

  18. Malashetty, M.S., Umavathi, J.C., Kumar, J.P.: Convective magnetohydrodynamic two fluid flow and heat transfer in an inclined channel. Heat Mass Transf. 37(2–3), 259–264 (2001)

    Article  Google Scholar 

  19. Megahed, A.A.: Unsteady MHD flow through porous-medium bounded by a porous plate. Indian J. Pure Appl. Math. 15(10), 1140–1147 (1984)

    MATH  Google Scholar 

  20. Megahed, A.M.: Variable heat flux effect on magnetohydrodynamic flow and heat transfer over an unsteady stretching sheet in the presence of thermal radiation. Can. J. Phys. 92(1), 86–91 (2014)

    Article  Google Scholar 

  21. Megahed, A.M.: Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation. J. Cent. S. Univ. 23(4), 991–999 (2016)

    Article  Google Scholar 

  22. Raptis, A., Massalas, C.V.: Magnetohydrodynamic flow past a plate by the presence of radiation. Heat Mass Transf. 34(2–3), 107–109 (1998)

    Article  Google Scholar 

  23. Rosseland, S.: Astrophysik: Auf Atomtheoretischer Grundlage, vol. 11. Springer, Berlin (2013)

    MATH  Google Scholar 

  24. Sa’adAldin, A., Qatanani, N.: On unsteady MHD flow through porous medium between two parallel flat plates. An-Najah Univ. J. Res. 30(1), 173–186 (2016)

    Google Scholar 

  25. Siddheshwar, P.G., Siddabasappa, C.: Linear and weakly nonlinear stability analyses of two-dimensional, steady Brinkman–Bénard convection using local thermal non-equilibrium model. Transp. Porous Media 120(3), 605–631 (2017)

    Article  MathSciNet  Google Scholar 

  26. Siddheshwar, P.G., Siddabasappa, C., Laroze, D.: Küppers-Lortz instability in the rotating Brinkman-Bénard problem. Transp. Porous Media 132, 465–493 (2020)

    Article  MathSciNet  Google Scholar 

  27. Singh, B., Lal, J.: Finite element method for unsteady MHD flow through pipes with arbitrary wall conductivity. Int. J. Numer. Methods Fluids 4(3), 291–302 (1984)

    Article  Google Scholar 

  28. VeeraKrishna, M., Chamkha, A.J.: Hall effects on unsteady mhd flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration. Phys. Fluids 30(5), 053101 (2018)

    Article  Google Scholar 

  29. VeeraKrishna, M., Reddy, G.S.: Unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel. J. Anal. 27(1), 103–120 (2019)

    Article  MathSciNet  Google Scholar 

  30. VeeraKrishna, M., Subba Reddy, G., Chamkha, A.J.: Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. Phys. Fluids 30(2), 023106 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Siddabasappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddabasappa, C. Unsteady Magneto-Hydrodynamic Flow Through Saturated Porous Medium with Thermal Non-equilibrium and Radiation Effects. Int. J. Appl. Comput. Math 6, 66 (2020). https://doi.org/10.1007/s40819-020-00825-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00825-2

Keywords

Navigation