Skip to main content
Log in

Fast and Accurate Calculations of Fourth-Order Non-self-adjoint Sturm–Liouville Eigenvalues for Problems in Physics and Engineering

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Finding the eigenvalues of non-self-adjoint boundary value problems is a very difficult task, especially when the problems are of higher-order or when high-index eigenvalues are required. In fact, the lack of oscillation theorems of non-self-adjoint problems as well as the distribution and scatteration of the eigenvalues in the complex plane, makes the computational process of the eigenvalues a strong and difficult challenge. In this paper, we propose a fast and accurate numerical technique based on the Chebyshev spectral collocation method for approximating the eigenvalues of fourth-order non-self-adjoint Sturm–Liouville boundary value problems. This technique transforms the non-self-adjoint problem into a generalized eigenvalue problem by employing the spectral differentiation matrices to determine the derivatives of Chebyshev polynomials at the Chebyshev–Gauss–Lobatto nodes. The excellent performance of the suggested technique is investigated by considering three numerical examples among which singular ones. The numerical results and comparison with other methods indicate that this technique is easy to implement, considerably accurate and requires less computational costs even when high-index eigenvalues are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies, E.B.: Pseudospectra, the harmonic oscillator and complex resonances. Proc. Roy. Soc. Lond. Ser. A 455, 585–599 (1999)

    Article  MATH  Google Scholar 

  2. Davies, E.B.: Non-self-adjoint differential operators. J. Math. Anal. Appl. 34, 513–532 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press (1961)

  4. Chandrasekhar, S.: On the characteristic value problems in high order differential equations which arise in studies on hydrodynamic and hydromagnetic stability. Amer. Math. Mon. 61, 32–45 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ji, X., Li, P., Sun, J.: Computation of transmission eigenvalues for elastic waves. Numer. Anal. (2018). arXiv:1802.03687

  6. Ji, X., Li, P., Sun, J.: Computation of interior elastic transmission eigenvalues using a conforming finite element and the secant method. Results Appl. Math. 5, 100083 (2020)

    Article  MATH  Google Scholar 

  7. Xi, Y., Ji, X.: A lowest-order mixed finite element method for the elastic transmission eigenvalue problem. Commun. Comput. Phys. 28, 1105–1132 (2020)

    Article  MathSciNet  Google Scholar 

  8. Rekhviashvili, S., Pskhu, A., Agarwal, P., Jain, S.: Application of the fractional oscillator model to describe damped vibrations. Turk. J. Phys. 43, 236–242 (2019)

    Article  Google Scholar 

  9. Gasser, R., Gedicke, J., Sauter, S.: Benchmark computation of eigenvalues with large defect for non-selfadjoint elliptic differential operators. SIAM J. Sci. Comput. 41, A3938–A3953 (2019)

    Article  MATH  Google Scholar 

  10. Xu, F., Yueb, M., Huanga, Q., Mac, H.: An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. Appl. Numer. Math. 156, 210–227 (2020)

    Article  MathSciNet  Google Scholar 

  11. Yang, M., Ao, J., Li, C.: Non-self-adjoint fourth-order dissipative operators and the completeness of their eigenfunctions. Oper. Matrices 10, 651–668 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Z., Wu, H.: Dissipative non-self-adjoint Sturm–Liouville operators and completeness of their eigenfunctions. J. Math. Anal. Appl. 394, 1–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty: application to the basset problem. Entropy 17, 885–902 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pryc, J.D.: Numerical solution of Sturm–Liouville problems. Oxford science publications, Clarendon Press (1993)

  15. Zettl, A.: Sturm-Liouville theory. American mathematical society, Providence RI (2005)

  16. Taher, A.H.S., Malek, A.: A new algorithm for solving sixth-order Sturm-Liouville problems. Int. J. Appl. Math. 24, 631–639 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Taher, A.H.S., Malek, A.: An efficient algorithm for solving high-order Sturm-Liouville problems using variational iteration method. Fixed Point Theory 14, 193–210 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Taher, A.H.S., Malek, A., Thabet, A.S.A.: Semi-analytical approximation for solving high-order Sturm-Liouville problems. Br. J. Math. Comput. Sci. 23, 3345–3357 (2014)

    Article  Google Scholar 

  19. Taher, A.H.S., Malek, A., Momeni-Masuleh, S.H.: Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems. Appl. Math. Model. 37, 4634–4642 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taher, A.H.S.: Computing high-index eigenvalues of singular Sturm–Liouville problems. Int. J. Appl. Comput. Math. 5, 45 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Charandabi, Z.Z., Rezapour, S., Ettefagh, M.: On a fractional hybrid version of the Sturm–Liouville equation. Adv. Differ. Equ. 2020, 301 (2020)

    Article  MathSciNet  Google Scholar 

  22. Charandabi, Z.Z., Rezapour, S.: Fractional hybrid inclusion version of the Sturm–Liouville equation. Adv. Differ. Equ. 2020, 546 (2020)

    Article  MathSciNet  Google Scholar 

  23. Nedelec, L.: Perturbations of non self-adjoint Sturm–Liouville problems, with applications to harmonic oscillators. Methods. Appl. Anal. 13, 123–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brown, B.M., Marletta, M.: Spectral inclusion and spectral exactness for singular non-self-adjoint Sturm–Liouville problems. Proc. R. Soc. Lond. Ser. A 457, 117–139 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brown, B.M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M.: Eigenvalue bounds for the singular Sturm–Liouville problem with a complex potential. J. Phys. A. Math. Gen. 36, 3773–3787 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boumenir, A.: Sampling and eigenvalues of non self-adjoint Sturm–Liouville problems. SIAM J. Sci. Comput. 23, 219–229 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chanane, B.: Computing the spectrum of non-self-adjoint Sturm–Liouville problems with parameter-dependent boundary conditions. J. Comput. Appl. Math. 206, 229–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boumenir, A.: The determinant method for nonselfadjoint singular Sturm–Liouville problems. Comput. Methods. Appl. Math. 9, 113–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng, S.S., Edelson, A.L.: Fourth order nonselfadjoint differential equations with clamped-free boundary conditions. Annali di Matematica 118, 131–142 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Greenberg, L., Marletta, M.: Numerical methods for higher order Sturm–Liouville problems. J. Comput. Appl. Math. 125, 367–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Greenberg, L., Marletta, M.: Numerical solution of nonselfadjoint Sturm–Liouville problems and related systems. SIAM J Numer. Anal. 38, 1800–1845 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brown, B.M., Marletta, M.: Spectral inclusion and spectral exactness for singular non-self-adjoint Hamiltonian systems. Proc. R. Soc. Lond. A 459, 1987–2009 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marletta, M., Pryce, J.D.: Automatic solution of Sturm-Liouville problems using the Pruess method. J. Comp. Appl. Math. 39, 57–78 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis and applications. Springer-Verlag (2011)

  35. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods fundamentals in fluid dynamics. Springer (1988)

  36. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods fundamentals in single domains. Springer (2007)

  37. Agarwal, P., Attary, M., Maghasedi, M., Kumam, P.: Solving higher-order boundary and initial value problems via Chebyshev-spectral method: application in elastic foundation. Symmetry 12, 987 (2020)

    Article  Google Scholar 

  38. Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Physica A 500, 40–49 (2018)

    Article  MathSciNet  Google Scholar 

  39. Baleanu, D., Shiri, B., Srivastava, H.M., Al Qurashi, M.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Trefethen, L.N.: Spectral Methods in Matlab. SIAM (2000)

  41. Glashoff, K., Roleff, K.: A new method for Chebyshev approximation of complex-valued functions. Math. Comp. 36, 233–239 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Streit, R.L., Nuttall, A.H.: A general Chebyshev complex function approximation procedure and an application to beamforming. J. Acoust. Soc. Am. 72, 181–190 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  43. Spagl, C.: On complex valued functions with strongly unique best Chebyshev approximation. J. Approx. Theory 74, 16–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zalik, R.A.: Some properties of Chebyshev systems. J. Comput. Anal. Appl. 13, 20–26 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Uǧurlu, E., Bairamov, E.: On singular dissipative fourth-order differential operator in lim-4 case. ISRN Math. Anal. 2013, 1–5 (2013)

    Article  MathSciNet  Google Scholar 

  46. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  47. Trefethen, L.N.: Approximation theory and approximation practice. SIAM (2013)

  48. Gheorghiu, C.I.: Spectral methods for non-standard eigenvalue problems- Fluid and Structural Mechanics and Beyond. Springer, Heidelberg (2014)

    Book  MATH  Google Scholar 

  49. Surana, K., Ahmadi, A.R., Reddy, J.: The \(k\)-version of finite element method for non-self-adjoint operators in BVP. Int. J. Comput. Sci. Eng. 4, 737–812 (2003)

    Google Scholar 

  50. Zhang, X.: Mapped barycentric Chebyshev differentiation matrix method for the solution of regular Sturm–Liouville problems. Appl. Math. Comput. 217, 2266–2276 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Balyan, L.K., Dutt, P.K., Rathore, R.K.S.: Least squares \(h\)-\(p\) spectral element method for elliptic eigenvalue problems. Appl. Math. Comput. 218, 9596–9613 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Giani, S., Grubišić, L., Miedlar, A., Ovall, J.S.: Robust estimates for \(hp\)-adaptive approximations of non-self-adjoint eigenvalue problems.Technical Report, #1008, (2013)

  53. Han, J., Yang, Y.: A class of spectral element methods and its a priori/a posteriori error estimates for 2nd-order elliptic eigenvalue problems. Abstr. Appl. Anal. 2013, 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Giannakis, D., Fischer, P.F., Rosner, R.: A spectral Galerkin method for the coupled Orr-Sommerfeld and induction equations for free-surface MHD. Comput. Phys. Commun. 228, 1188–1233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465–519 (2000)

    Article  MathSciNet  Google Scholar 

  56. Brown, B.M., Langer, M., Marletta, M., Tretter, C., Wagenhofer, M.: Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics. LMS J. Comput. Math. 13, 65–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude and appreciation for Editorial Submission Advisors at the Springer Nature Transfer Desk for their valuable help. The author also thank Editors and Reviewers of International Journal of Applied and Computational Mathematics for their review efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Haytham Saleh Taher.

Ethics declarations

Conflict of interest

Conflicts of interest The author declare that he have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, A.H.S. Fast and Accurate Calculations of Fourth-Order Non-self-adjoint Sturm–Liouville Eigenvalues for Problems in Physics and Engineering. Int. J. Appl. Comput. Math 7, 212 (2021). https://doi.org/10.1007/s40819-021-01151-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01151-x

Keywords

Mathematics Subject Classification

Navigation