Skip to main content
Log in

Mathematical Modelling of Carbon Nanotube with Fluid Flow using Keller Box Method: A Vibrational Study

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear vibration of an embedded single-walled carbon nanotube conveying fluid is investigated numerically. The nonlocal continuum theory is applied to simulate the nonlinear vibration of a single-walled carbon nanotube with fluid flow. The Keller Box Method is used to solve the corresponding nonlinear differential equation. The effects of the flow velocity, vibration amplitude, nonlocal parameter and stiffness of the medium on the nonlinear frequency of carbon nanotube are studied.The results show that the nonlinear flow-induced frequency alter from the linear frequency greatly when the amplitude, flow velocity, and nonlocal parameter are high while for the carbon nanotubes embedded in the mediums of high Pasternak parameters, the nonlinearity of the model does not demonstrate a significant effect on the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Song, H.-Y., Zha, X.-W.: Mechanical properties of nickel-coated singlewalled carbon nanotubes and their embedded gold matrix composites. Phys. Lett. A 374, 1068–1072 (2010)

    Article  Google Scholar 

  3. Lai, P.L., Chen, S.C., Lin, M.F.: Electronic properties of single-walled carbon nanotubes under electric and magnetic fields. Phys. E 40, 2056–2058 (2008)

    Article  Google Scholar 

  4. Deretzis, I., La Magna, A.: Electronic transport in carbon nanotube based nanodevices. Phys. E 40, 2333–2338 (2008)

    Article  Google Scholar 

  5. Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based biosensors. Phys. E 42, 104–109 (2009)

    Article  Google Scholar 

  6. Mehdipour, I., Barari, A., Domairry, G.: Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50, 1830–1833 (2011)

    Article  Google Scholar 

  7. Hornbostel, B., Pötschke, P., Kotz, J., Roth, S.: Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Phys. E 40, 2434–2439 (2008)

    Article  Google Scholar 

  8. Hwang, C.C., Wang, Y.C., Kuo, Q.Y., Lu, J.M.: Molecular dynamics study of multiwalled carbon nanotubes under uniaxial loading. Phys. E 42, 775–778 (2010)

    Article  Google Scholar 

  9. Ru, C.Q.: Intrinsic vibration of multiwalled carbon nanotubes. Int. J. Nonlinear Sci. Numer. Simul. 3(3e4), 735–736 (2002)

    Google Scholar 

  10. Yoon, J., Ru, C.Q., Mioduchowski, A.: Noncoaxial resonance of an isolated multiwall carbon nanotube. Phys. Rev. B 66, 233402 (2002)

    Article  Google Scholar 

  11. Zhang, Y., Liu, G., Han, X.: Transverse vibrations of double-walled carbon nanotubes under compressive axial load. Phys. Lett. A 340, 258–266 (2005)

    Article  MATH  Google Scholar 

  12. Yoon, J., Ru, C.Q., Mioduchowski, A.: Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  13. Gibson, R.F., Ayorinde, E.O., Wen, Y.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  14. Wang, L., Ni, Q., Li, M., Qian, Q.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Phys. E 40(10), 3179–3182 (2008)

    Article  Google Scholar 

  15. Fu, Y.M., Hong, J.W., Wang, X.Q.: Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound Vib. 296, 746–756 (2006)

    Article  Google Scholar 

  16. Nasouri, K., Valipour, P.: Fabrication of polyamide 6/carbon nanotubes composite electrospun nanofibers for microwave absorption application. Polym. Sci. Ser. A 57(3), 359–364 (2015)

    Article  Google Scholar 

  17. Zolfagharian, A., Valipour, P., Ghasemi, S.E.: Fuzzy force learning controller of flexible wiper system. Neural Comput. Appl. 27, 483–493 (2016)

    Article  Google Scholar 

  18. Zolfagharian, A., Ghasemi, S.E., Imani, M.: A multi-objective, active fuzzy force controller in control of flexible wiper system. Latin Am. J. Solids Struct. 11(9), 1490–1514 (2014)

    Article  Google Scholar 

  19. Valipour, P., Ghasemi, S.E.: Numerical investigation of MHD water-based nanofluids flow in porous medium caused by shrinking permeable sheet. J Braz. Soc. Mech. Sci. Eng. 38, 859–868 (2016)

    Article  Google Scholar 

  20. Asoor, A.A.A., Valipour, P., Ghasemi, S.E.: Investigation on vibration of single-walled carbon nanotubes by variational iteration method. Appl. Nanosci. 6, 243–249 (2016)

    Article  Google Scholar 

  21. Yang, X.-J., Baleanu, D., Khan, Y., Mohyud-Din, S.T.: Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)

    MathSciNet  Google Scholar 

  22. Zhang, Y., Yang, X.-J.: An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics. Appl. Math. Model. 40, 1793–1799 (2016)

    Article  MathSciNet  Google Scholar 

  23. Ghasemi, S.E., Jalili, Palandi S., Hatami, M., Ganji, D.D.: Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods. J. Math. Comput. Sci. 5(2), 97–104 (2012)

    Google Scholar 

  24. Ghasemi, S.E., Hatami, M., Ganji, D.D.: Analytical thermal analysis of air-heating solar collectors. J. Mech. Sci. Technol. 27(11), 3525–3530 (2013)

    Article  Google Scholar 

  25. Yang, X.-J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics. Rom. Rep. Phys. 67(3), 752–761 (2015)

    Google Scholar 

  26. Zhang, Y., Cattani, C., Yang, X.-J.: Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains. Entropy 17, 6753–6764 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ghasemi, Seiyed E., Zolfagharian, A., Hatami, M., Ganji, D.D.: Analytical thermal study on nonlinear fundamental heat transfer cases using a novel computational technique. Appl. Therm. Eng. 98(2016), 88–97 (2015)

    Google Scholar 

  28. Ghasemi, S.E., Hatami, M., Ganji, D.D.: Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud. Therm. Eng. 4, 1–8 (2014)

    Article  Google Scholar 

  29. Ghasemi, S.E., Valipour, P., Hatami, M., Ganji, D.D.: Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J. Cent. South Univ. 21, 4592–4598 (2014)

    Article  Google Scholar 

  30. Yang, Xiao-Jun, Machado, J.A.Tenreiro, Srivastava, H.M.: A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Appl. Math. Comput. 274, 143–151 (2016)

    MathSciNet  Google Scholar 

  31. Ghasemi, S.E., Zolfagharian, A., Ganji, D.D.: Study on motion of rigid rod on a circular surface using MHPM. Propuls. Power Res. 3(3), 159–164 (2014)

    Article  Google Scholar 

  32. Ghasemi, S.E., Hatami, M., Mehdizadeh Ahangar, G.H.R., Ganji, D.D.: Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. J. Electrost. 72, 47–52 (2014)

    Article  Google Scholar 

  33. Ghasemi, S.E., Vatani, M., Ganji, D.D.: Efficient approaches of determining the motion of a spherical particlein a swirling fluid flow using weighted residual methods. Particuology 23, 68–74 (2015)

    Article  Google Scholar 

  34. Darzi, M., Vatani, M., Ghasemi, S.E., Ganji, D.D.: Effect of thermal radiation on velocity and temperature fields of a thin liquid film over a stretching sheet in a porous medium. Eur. Phys. J. Plus 130, 100 (2015)

    Article  Google Scholar 

  35. Ghasemi, S.E., Hatami, M., Kalani, Sarokolaie A., Ganji, D.D.: Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods. Phys. E 70, 146–156 (2015)

    Article  Google Scholar 

  36. Ghasemi, Seiyed E., Vatani, M., Hatami, M., Ganji, D.D.: Analytical and numerical investigation of nanoparticles effect on peristaltic fluid flow in drug delivery systems. J. Mol. Liq. 215, 88–97 (2016)

    Article  Google Scholar 

  37. Valipour, P., Ghasemi, S.E., Vatani, M.: Theoretical investigation of micropolar fluid flow between two porous disks. J. Cent. South Univ. 22, 2825–2832 (2015)

    Article  Google Scholar 

  38. Yang, X.-J., Srivastava, H.M.: An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 29, 499–504 (2015)

    Article  MathSciNet  Google Scholar 

  39. Yang, Y.-J., Baleanu, D., Yang, X.-J.: Analysis of fractal wave equations by local fractional Fourier series method. In: Advances in Mathematical Physics. Hindawi Publishing Corporation (2013)

  40. Yang, X.-J., Zhang, Y., Yang, A.: 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method. Therm. Sci. 17(3), 953–956 (2013)

    Article  Google Scholar 

  41. Bellman, R.E., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shu, C.: Differential Quadrature and its Application in Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  43. Ghasemi, S.E., Hatami, M., Hatami, J., Sahebi, S.A.R., Ganji, D.D.: An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by Differential Quadrature Method. Phys. A 443, 406–414 (2016)

    Article  MathSciNet  Google Scholar 

  44. Kiani, K.: Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes. Physica E Low Dimens. Syst. Nanostruct. 60, 229–245 (2014)

    Article  Google Scholar 

  45. Kiani, K.: Nonlocal discrete and continuous modeling of free vibration of stocky ensembles of single-walled carbon nanotubes. Curr. Appl. Phys. 14(8), 1116–1139 (2014)

    Article  Google Scholar 

  46. Kiani, K.: Wave characteristics in aligned forests of single-walled carbon nanotubes using nonlocal discrete and continuous theories. Int. J. Mech. Sci. 90(1), 278–309 (2015)

    Article  Google Scholar 

  47. Reddy, J., Pang, S.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  48. Reddy, J.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Timoshenko, S.P.: On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philoso. Mag. Ser. 6(41), 744–746 (1921)

    Article  Google Scholar 

  50. ASTM D790–90: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. American Society for Testing and Materials, Philadelphia, PA (1990)

  51. Fischer, S., Roman, I., Harel, H., Marom, G., Wagmer, H.D.: Simultaneous determination of shear and Young’s moduli in composites. J. Test. Eval. 9(5), 303–307 (1981)

    Article  Google Scholar 

  52. Keller, H.B.: A new difference scheme for parabolic problems. In: Hubbard, B. (ed.) Numerical Solution of Partial Differential Equations, II, pp. 327–350. Academic Press, New York (1971)

    Chapter  Google Scholar 

  53. Bradshaw, P., Cebeci, T., Whitelaw, J.H.: Engineering Calculation Methods for Turbulent Flow. Academic Press, New York (1981)

    MATH  Google Scholar 

  54. Lakshminarayana, B.: Fluid Dynamics and Heat Transfer of Turbomachinery. Wiley, New York (1996)

    Google Scholar 

  55. Tannehill, J.C., Anderson, D.A., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer, 2nd edn. Taylor & Francis, London (1997)

    MATH  Google Scholar 

  56. Keller, H.B.: Numerical methods in boundary-layer theory. Annu. Rev. Fluid Mech. 10, 417–433 (1978)

    Article  MathSciNet  Google Scholar 

  57. Keller, H.B., Cebeci, T.: Accurate numerical methods for boundary-layer flows. II: two-dimensional turbulent flows. AIAA J. 10(9), 1193–1199 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asoor, A.A.A., Valipour, P., Ghasemi, S.E. et al. Mathematical Modelling of Carbon Nanotube with Fluid Flow using Keller Box Method: A Vibrational Study. Int. J. Appl. Comput. Math 3, 1689–1701 (2017). https://doi.org/10.1007/s40819-016-0206-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0206-3

Keywords

Navigation