Skip to main content
Log in

A Scale-Critical Trapped Surface Formation Criterion: A New Proof Via Signature for Decay Rates

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We provide a self-contained proof of a trapped surface formation theorem, which simplifies the previous results by Christodoulou and by An–Luk. Our argument is based on a systematic approach for the scale-critical estimates in An–Luk and it connects Christodoulou’s short-pulse method and Klainerman–Rodnianski’s signature counting argument to the peeling properties previously studied in the small-data regime such as Klainerman–Nicolo. In particular this allows us to avoid elliptic estimates and geometric renormalizations, and gives us new technical improvements and simplifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The detailed construction of double null foliation will be explained in Sect. 2.1.

  2. A 2-surface is called a trapped surface if its area element is infinitesimally decreasing along both families of null geodesics emanating from the surface

  3. Metric of Minkowskian spacetime in spherical coordinates: \(g_{M}=-dt^2+dr^2+r^2(d\theta ^2+\sin \theta ^2 d\phi ^2)\).

  4. Metric of Minkowskian spacetime in stereographic coordinates: \(g_{M}=-dt^2+dr^2+\frac{4r^4}{(r^2+\theta _1^2+\theta _2^2)^2}(d\theta _1^2+d\theta _2^2)\). In Sect. 8, we will do a scaling argument in stereographic coordinates.

  5. Metric of Schwarzschild spacetime: \(g_S=-(1-\frac{2M}{r})dt^2+({1-\frac{2M}{r}})^{-1}dr^2+r^2(d\theta ^2+\sin \theta ^2 d\phi ^2)\). Here M is a constant. In \(g_S\) all metric components are independent of t, Schwarzschild spacetime is static, i.e. not changing with t.

  6. The classic approach to deriving energy estimates with Bel–Robinson tensors as in [6] and [13] is avoid, since for higher order energy estimates there are many more terms (including borderline terms) from deformation tensors would appear.

  7. Letting \(a=\delta ^{-1}\), in a finite region they recover Christodoulou’s main result of [6].

  8. It comes from spacetime conformal compactification. See [11].

  9. In this article, we use l.o.t. to mean lower order terms.

  10. More details will be provided in Section 2.5.

  11. For a general double null foliation, we have the gauge freedom of choosing how to extend \(\Omega \) along \(H_{u_{\infty }}\) and \({\underline{H}}_0\). In this paper, we extend \(\Omega \equiv 1\) on both \(H_{u_{\infty }}\) and \({\underline{H}}_0\).

  12. On \({\underline{H}}_0\), we have \(\Omega =1\) and \({{\mathcal {L}}} /\,_{{\underline{L}}} \theta ^A=\frac{\partial }{\partial u}\theta ^A\).

  13. That’s because (1.1) is a geometric PDE system and it respects some natural scalings.

  14. See full details in Chapter 16 of [6] or [17] or Sect. 10 of [8] for a beautiful exposition.

  15. See Remark 14.

  16. Recall \({\underline{L}}=\Omega e_3\).

  17. From conformal compactification.

References

  1. An, X.: Formation of trapped surfaces from past null infinity. (2012) arXiv:1207.5271

  2. An, X.: Emergence of apparent horizon in gravitational collapse. Ann. PDE 6, 1–89 (2020)

    Article  MathSciNet  Google Scholar 

  3. An, X., Han, Q.: Anisotropic dynamical horizons arising in gravitational collapse. 51pp. arXiv: 2010.12524

  4. An, X., Athanasiou, N.: A scale-critical trapped surface formation criterion for the Einstein–Maxwell equations. 105pp. arXiv: 2005.12699

  5. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys. 21, 1–120 (2017)

    Article  MathSciNet  Google Scholar 

  6. Christodoulou, D.: The Formation of Black Holes in General Relativity. Monographs in Mathematics. European Mathematical Society, Zurich (2009)

    Book  Google Scholar 

  7. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Math. Ser. 41, 1–29 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Dafermos, M.: The formation of black holes in general relativity. Astrisque 352, 243–313 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Holzegel, G.: Ultimately Schwarzschildean spacetimes and the black hole stability problem. (2010) arXiv:1010.3216

  10. Klainerman, S., Nicolo, F.: The Evolution Problem in General Relativity. Progress in Mathematical Physics, Birkhaüser (2003)

    Book  Google Scholar 

  11. Klainerman, S., Nicolo, F.: Peeling properties of asymptotically flat solutions to the Einstein vacuum equations. Class. Quantum Grav. 20, 3215–3257 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. Math. 198(1), 1–26 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Klainerman, S., Rodnianski, I.: On the formation of trapped surfaces. Acta Math. 208(2), 211–333 (2012)

    Article  MathSciNet  Google Scholar 

  14. Le, P.: The intersection of a hyperplane with a lightcone in the Minkowski spacetime. J. Differ. Geom. 109(3), 497–507 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, J., Liu, J.: Instability of spherical naked singularities of a scalar field under gravitational perturbations. (2017) arXiv: 1710.02422

  16. Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181(2), 699–768 (2015)

    Article  MathSciNet  Google Scholar 

  17. Luk, J.: On the local existence for the characteristic initial value problem in general relativity. Int. Mat. Res. Notices 20, 4625–4678 (2012)

    Article  MathSciNet  Google Scholar 

  18. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Commun. Pure Appl. Math. 68(4), 511–624 (2015)

    Article  MathSciNet  Google Scholar 

  19. Luk, J., Rodnianski, I.: Nonlinear interactions of impulsive gravitational waves for the vacuum Einstein equations. Camb. J. Math. 5(4), 435–570 (2017)

    Article  MathSciNet  Google Scholar 

  20. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rodnianski, I., Shlapentokh-Rothman, Y.: The asymptotically self-similar regime for the Einstein vacuum equations. Geom. Funct. Anal. 28, 755–878 (2018)

    Article  MathSciNet  Google Scholar 

  22. Yu, P.: Energy estimates and gravitational collapse. Commun. Math. Phys. 317(2), 275–316 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yu, P.: Dynamical formation of black holes due to the condensation of matter field. (2011) arXiv: 1105.5898

Download references

Acknowledgements

XA has been supported by the startup grant from National University of Singapore under Project Number R-146-000-269-133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinliang An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X. A Scale-Critical Trapped Surface Formation Criterion: A New Proof Via Signature for Decay Rates. Ann. PDE 8, 3 (2022). https://doi.org/10.1007/s40818-021-00114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00114-1

Keywords

Navigation