Skip to main content
Log in

Incompressible Euler Limit from Boltzmann Equation with Diffuse Boundary Condition for Analytic Data

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

A rigorous derivation of the incompressible Euler equations with the no-penetration boundary condition from the Boltzmann equation with the diffuse reflection boundary condition has been a challenging open problem. We settle this open question in the affirmative when the initial data of fluid are well-prepared in a real analytic space, in 3D half space. As a key of this advance, we capture the Navier-Stokes equations of

$$\begin{aligned} \textit{viscosity} \sim \frac{\textit{Knudsen number}}{\textit{Mach number}} \end{aligned}$$

satisfying the no-slip boundary condition, as an intermediary approximation of the Euler equations through a new Hilbert-type expansion of the Boltzmann equation with the diffuse reflection boundary condition. Aiming to justify the approximation we establish a novel quantitative \(L^p\)-\(L^\infty \) estimate of the Boltzmann perturbation around a local Maxwellian of such viscous approximation, along with the commutator estimates and the integrability gain of the hydrodynamic part in various spaces; we also establish direct estimates of the Navier-Stokes equations in higher regularity with the aid of the initial-boundary and boundary layer weights using a recent Green’s function approach. The incompressible Euler limit follows as a byproduct of our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arsenio, D., Saint-Raymond, L.: From the Vlasov-Maxwell-Boltzmann System to Incompressible Viscous Electro-Magneto-Hydrodynamics. European Mathematical Society Publishing House, Zurich (2019). https://doi.org/10.4171/193

  2. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  ADS  MATH  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations, II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MATH  Google Scholar 

  4. Bardos, C., Golse, F., Paillard, L.: The incompressible Euler limit of the Boltzmann equation with accommodation boundary condition. Commun. Math. Sci. 10(1), 159–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Briant, M., Merino-Aceituno, S., Mouhot, C.: From Boltzmann to incompressible Navier-Stokes in Sobolev spaces with polynomial weight. Anal. Appl. 17(1), 85–116 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains. Arch. Ration. Mech. Anal. 233(3), 1027–1130 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caflisch, R.: The fluid dynamic limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33(5), 651–666 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chen, H.: Cercignani-Lampis boundary in the Boltzmann theory. Kinet. Relat. Models 13(3), 549–597 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Devillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159(2), 245–316 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. de Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Comm. Pure Appl. Math. 42, 1189–1214 (1989)

  11. DiPerna, R.J., Lions, P.L.: On the Cauchy problem for the Boltzmann equation: global existence and weak stability results. Ann. Math. 130, 321–366 (1990)

    Article  MATH  Google Scholar 

  12. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and fourier law. Commun. Math. Phys. 323(1), 177–239 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Esposito, R., Guo, Y., Kim, C., Marra, R.: Stationary solutions to the Boltzmann equation in the hydrodynamic limit. Ann. PDE 4(1), 1–119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esposito, R., Guo, Y., Kim, C., Marra, R.: Diffusive limits of the Boltzmann equation in bounded domain. Ann. Appl. Math. 36, 111–185 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Esposito, R., Guo, Y., Marra, R.: Hydrodynamic limit of a kinetic gas flow past an obstacle. Commun. Math. Phys. 364, 765–823 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Glassey, R.: The Cauchy Problems in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  17. Golse, F.: Hydrodynamic Limits, pp. 699–717. European Mathematical Society, Zrich (2005)

    MATH  Google Scholar 

  18. Golse, F.: From the Boltzmann equation to the Euler equations in the presence of boundaries. Comput. Math. Appl. 65(6), 815–830 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207, 115–290 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV-regularity of the Boltzmann equation in non-convex domains. Arch. Ration. Mech. Anal. 220, 1045–1093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Y.: Boltzmann diffusive limit beyond the Navier-Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y., Jang, J., Jiang, N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63(3), 337–361 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov-Poisson-Boltzmann system. Commun. Math. Phys. 299(2), 469–501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Guo, Y., Jang, J., Jiang, N.: Local Hilbert expansion for the Boltzmann equation. Kinet. Relat. Models 1, 205–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, Y., Wu, L.: Geometric correction in diffusive limit of neutron transport equation in 2D convex domains. Arch. Ration. Mech. Anal. 226(1), 321–403 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Commun. Math. Phys. 144(1), 163–188 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Hilbert, D.: Mathematical problems, ICM Paris 1900, translated and reprinted in Bull. Am. Soc. 37, 407–436 (2000)

    Google Scholar 

  30. Hilbert, D.: Begrundung der kinetischen Gastheorie. Math. Ann. 72(4), 562–577 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jabin, P.-E., Vega, L.: A real space method for averaging lemmas. J. Math. Pures Appl. 83, 1309–1351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jang, J.: Vlasov-Maxwell-Boltzmann diffusive limit. Arch. Ration. Mech. Anal. 194(2), 531–584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, N., Masmoudi, N.: Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann equation in bounded domain I. Commun. Pure Appl. Math. 70(1), 90–171 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Proceedings of the Seminar on nonlinear partial differential equations, pp. 85–98. (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., 2, Springer, New York (1984)

  35. Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Commun. Math. Phys. 308, 641–701 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. 71, 411–504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, C., Lee, D.: Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains. Arch. Ration. Mech. Anal. 230(1), 49–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kukavica, I., Vicol, V., Wang, F.: The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary. Arch. Ration. Mech. Anal. 237, 779–827 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Vol. 1: Incompressible Models, The Clarendon Press, Oxford University Press, New York (1996)

  40. Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics, I. Arch. Ration. Mech. Anal. 158, 173–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lions, P.L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics II. Arch. Ration. Mech. Anal. 158, 195–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes-Fourier system in a bounded domain. Commun. Pure Appl. Math. 56, 1263–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Maekawa, Y.: Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit. Adv. Differ. Equ. 18(1/2), 101–146 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half- plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Maekawa, Y., Mazzucato, A.: The inviscid limit and boundary layers for Navier-Stokes flows. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1-48 (2016)

  46. Mischler, S.: Kinetic equations with Maxwell boundary conditions. Annales Scientifiques de l’ENS 43, 719–760 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Nguyen, T.T., Nguyen, T.T.: The inviscid limit of Navier-Stokes equations for analytic data on the half-space. Arch. Ration. Mech. Anal. 230(3), 1103–1129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192(2):433-461, (1998)

  49. Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192(2):463–491, (1998)

  50. Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Springer, Berlin, Heidelberg (2009)

    Book  MATH  Google Scholar 

  51. Saint-Raymond, L.: Convergence of solutions to the Boltzmann equation in the incompressible Euler limit. Arch. Ration. Mech. Anal. 166, 47–80 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Speck, J., Strain, R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Ukai, S., Asano, K.: The Euler limit and initial layer of the nonlinear Boltzmann equation, Hokkaido Math. J. 12, 3, part 1, 311–332 (1983)

  54. Wang, F.: The 3D inviscid limit problem with data analytic near the boundary. SIAM J. Math. Anal. 52(4), 3520–3545 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wu, L.: Hydrodynamic limit with geometric correction of stationary Boltzmann equation. J. Differ. Equ. 260(10), 7152–7249 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Wu, W., Zhou, F., Li, Y.: Incompressible Euler limit of the Boltzmann equation in the whole space and a periodic box. NoDEA Nonlinear Differential Equations Appl. 26(5), Paper No. 35, pp. 21 (2019)

Download references

Acknowledgements

Part of this work was conducted while the authors were participating in the INdAM worksop “Recent advances in kinetic equations and applications” organized by Francesco Salvarani in Rome. We thank the institute and the organizer for its generous hospitality and support. JJ was supported in part by the NSF Grants DMS-1608494, DMS-2009458, and by the Simons Fellowship (Grant # 616364). CK was supported in part by National Science Foundation under Grant Nos. 1501031, 1900923, 2047681, and the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanwoo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Sobolev Embedding in 1D

Appendix A. Sobolev Embedding in 1D

Often we have used a standard 1D embedding: For \(T>0\),

$$\begin{aligned} |g(t)|^2 \lesssim _T \int _0^T |g(s)|^2 \mathrm {d}s + \int _0^T |g^\prime (s)|^2 \mathrm {d}s \ \ \text {for } t \in [0,T]. \end{aligned}$$
(A.1)

A proof is based on an equality:

$$\begin{aligned} |g(t)|^2= \frac{1}{T/2 }\int ^{t+T /2}_t \Big ( g(s) - \int ^s_t g^\prime (\tau ) \mathrm {d}\tau \Big )^2 \mathrm {d}s . \end{aligned}$$

For \(0< t \le T/2\),

$$\begin{aligned} \begin{aligned} |g(t)|^2&\le \frac{1}{T/2}\int ^{t+T/2}_t \Big ( 2 |g(s)|^2 + 2\Big | \int ^s_t g^\prime (\tau ) \mathrm {d}\tau \Big |^2 \Big ) \mathrm {d}s\\&\le \frac{1}{T/2}\int ^{t+T/2}_t \Big ( 2 |g(s)|^2 + 2 |s-t| \int ^s_t |g^\prime (\tau )|^2 \mathrm {d}\tau \Big ) \mathrm {d}s\\&\le \frac{2}{T/2}\int ^{t+T/2}_t |g(s)|^2 \mathrm {d}s + \frac{2}{T/2} \int ^{t+ T/2}_t |s-t| \int ^s_t |g^\prime (\tau )|^2 \mathrm {d}\tau \mathrm {d}s\\&\le \frac{2}{T/2}\int ^{t+T/2}_t |g(s)|^2 \mathrm {d}s+ T\int ^{t+T/2}_t |g^\prime (s)|^2 \mathrm {d}s\\&\lesssim _T \int _0^T |g(s)|^2 \mathrm {d}s + \int _0^T |g^\prime (s)|^2 \mathrm {d}s. \end{aligned} \end{aligned}$$

For \( T/2<t \le T\), using

$$\begin{aligned} |g(t)|^2= \frac{1}{T/2 }\int _{t-T /2}^t \Big ( g(s) - \int ^s_t g^\prime (\tau ) \mathrm {d}\tau \Big )^2 \mathrm {d}s , \end{aligned}$$

we derive that

$$\begin{aligned} \begin{aligned} |g(t)|^2&\le \frac{1}{T/2}\int _{t-T/2}^t \Big ( 2 |g(s)|^2 + 2\Big | \int ^s_t g^\prime (\tau ) \mathrm {d}\tau \Big |^2 \Big ) \mathrm {d}s\\&\le \frac{2}{T/2}\int _{t-T/2}^t |g(s)|^2 \mathrm {d}s+ T\int _{t-T/2}^t |g^\prime (s)|^2 \mathrm {d}s\\&\lesssim _T \int _0^T |g(s)|^2 \mathrm {d}s + \int _0^T |g^\prime (s)|^2 \mathrm {d}s. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J., Kim, C. Incompressible Euler Limit from Boltzmann Equation with Diffuse Boundary Condition for Analytic Data. Ann. PDE 7, 22 (2021). https://doi.org/10.1007/s40818-021-00108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00108-z

Keywords

Navigation