Skip to main content
Log in

Fuzzy Approximation-Based Adaptive Finite-Time Tracking Control for a Quadrotor UAV with Actuator Faults

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article focuses on the problem of adaptive finite-time trajectory tracking control for a quadrotor unmanned aerial vehicle (UAV) with actuator faults. By introducing a novel finite-time command filter, the derivative of virtual control law is approximated, so the issue of “explosion of complexity” is successfully avoided. At the same time, the fractional power error compensation mechanism is constructed to quickly remove the effect of filtered error. By virtue of the command filter technique, backstepping design method, and event-triggered control strategy, the adaptive finite-time fault-tolerant controllers for a quadrotor UAV are designed. It is demonstrated that all signals of the closed-loop system are finite time bounded, and the attitude and position tracking errors can converge to a small neighborhood near the origin in a finite time. Finally, the simulation examples are given to validate the efficacy of the developed adaptive finite-time control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2009)

    Article  Google Scholar 

  2. Xian, B., Guo, J., Zhang, Y.: Adaptive backstepping tracking control of a 6-dof unmanned helicopter. IEEE/CAA J. Autom. Sin. 2(1), 19–24 (2015)

    Article  MathSciNet  Google Scholar 

  3. Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63(4), 2263–2274 (2016)

    Google Scholar 

  4. Shao, S., Chen, M.: Adaptive neural discrete-time fractional-order control for a UAV system with prescribed performance using disturbance observer. IEEE Trans. Syst. Man Cybern.: Syst. 51(2), 742–754 (2021)

    Article  Google Scholar 

  5. Seyedtabaii, S.: New flat phase margin fractional order pid design: Perturbed UAV roll control study. Robot. Auton. Syst. 96, 58–64 (2017)

    Article  Google Scholar 

  6. Zheng, E., Xiong, J., Luo, J.: Second order sliding mode control for a quadrotor UAV. ISA Trans. 53(4), 1350–1356 (2014)

    Article  Google Scholar 

  7. Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Trans. Ind. Electron. 65(5), 4227–4236 (2017)

    Article  Google Scholar 

  8. Wang, R., Liu, J.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Frankl. Inst. 355(7), 3288–3309 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu, G., Cabecinhas, D., Cunha, R., Silvestre, C.: Nonlinear backstepping control of a quadrotor-slung load system. IEEE/ASME Trans. Mechatron. 24(5), 2304–2315 (2019)

    Article  Google Scholar 

  10. Xie, W., Cabecinhas, D., Cunha, R., Silvestre, C.: Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances. IEEE Trans. Ind. Electron. 69(1), 549–559 (2022)

    Article  Google Scholar 

  11. Shao, X., Liu, J., Cao, H., Shen, C., Wang, H.: Robust dynamic surface trajectory tracking control for a quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control 28(7), 2700–2719 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shen, Z., Li, F., Cao, X., Guo, C.: Prescribed performance dynamic surface control for trajectory tracking of quadrotor uav with uncertainties and input constraints. Int. J. Control 94(11), 2945–2955 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, X., Zheng, W., Zhou, X., Shao, S.: Adaptive dynamic surface and sliding mode tracking control for uncertain QUAV with time-varying load and appointed-time prescribed performance. J. Frankl. Inst. 358(8), 4178–4208 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aboudonia, A., El-Badawy, A., Rashad, R.: Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 90, 581–597 (2017)

    Article  MATH  Google Scholar 

  15. Cao, L., Wang, Y., Zhang, S., Fei, T.: Command-filtered sensor-based backstepping controller for small unmanned aerial vehicles with actuator dynamics. Int. J. Syst. Sci. 49(16), 3365–3376 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, K., Wang, R.: Antisaturation command filtered backstepping control based disturbance rejection for a quadarotor UAV. IEEE Trans. Circuits Syst. II: Express Briefs 68(12), 3577–3581 (2021)

    Article  Google Scholar 

  17. Sofianos, N.A., Boutalis, Y.S.: Robust adaptive multiple models based fuzzy control of nonlinear systems. Neurocomputing 173, 1733–1742 (2016)

    Article  Google Scholar 

  18. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern.: Syst. 47(8), 1979–1989 (2017)

    Article  Google Scholar 

  19. Fan, X., Bai, P., Li, H., Deng, X., Lv, M.: Adaptive fuzzy finite-time tracking control of uncertain non-affine multi-agent systems with input quantization. IEEE Access 8, 187623–187633 (2020)

    Article  Google Scholar 

  20. Song, S., Park, J.H., Zhang, B., Song, X.: Event-based adaptive fuzzy fixed-time secure control for nonlinear CPSs against unknown false data injection and backlash-like hysteresis. IEEE Trans. Fuzzy Syst. 30(6), 1939–1951 (2022)

    Article  Google Scholar 

  21. Su, H., Hu, Y., Karimi, H.R., Knoll, A., Ferrigno, G., De Momi, E.: Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results. Neural Netw. 131, 291–299 (2020)

    Article  MATH  Google Scholar 

  22. Su, H., Qi, W., Hu, Y., Karimi, H.R., Ferrigno, G., De Momi, E.: An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators. IEEE Trans. Ind. Inform. 18(3), 1864–1872 (2022)

    Article  Google Scholar 

  23. Song, S., Park, J.H., Zhang, B., Song, X.: Adaptive NN finite-time resilient control for nonlinear time-delay systems with unknown false data injection and actuator faults. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3070623

    Article  Google Scholar 

  24. Tran, V.P., Santoso, F., Garratt, M.A., Petersen, I.R.: Adaptive second-order strictly negative imaginary controllers based on the interval type-2 fuzzy self-tuning systems for a hovering quadrotor with uncertainties. IEEE/ASME Trans. Mechatron. 25(1), 11–20 (2020)

    Article  Google Scholar 

  25. Hua, C., Jiang, A., Li, K.: Adaptive neural network finite-time tracking quantized control for uncertain nonlinear systems with full-state constraints and applications to QUAVs. Neurocomputing 440(14), 264–274 (2021)

    Article  Google Scholar 

  26. Zhang, X., Wang, Y., Zhu, G., Chen, X., Li, Z., Wang, C., Su, C.Y.: Compound adaptive fuzzy quantized control for quadrotor and its experimental verification. IEEE Trans. Cybern. 51(3), 1121–1133 (2021)

    Article  Google Scholar 

  27. Wang, J., Wang, P., Ma, X.: Adaptive event-triggered control for quadrotor aircraft with output constraints. Aerosp. Sci. Technol. 105, 105935 (2020)

    Article  Google Scholar 

  28. Zhu, X.Z., Casau, P., Silvestre, C.: Event-triggered global trajectory tracking control of a quadrotor: synthesis, simulations, and experiments. Int. J. Robust Nonlinear Control 31(13), 6144–6165 (2021)

    Article  MathSciNet  Google Scholar 

  29. Tian, B., Cui, J., Lu, H., Liu, L., Zong, Q.: Attitude control of uavs based on event-triggered supertwisting algorithm. IEEE Trans. Ind. Inform. 17(2), 1029–1038 (2021)

    Article  Google Scholar 

  30. Lin, X., Liu, J., Yu, Y., Sun, C.: Event-triggered reinforcement learning control for the quadrotor UAV with actuator saturation. Neurocomputing 415, 135–145 (2020)

    Article  Google Scholar 

  31. Shao, S., Chen, M., Hou, J., Zhao, Q.: Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer. IEEE/ASME Trans. Mechatron. 26(2), 689–699 (2021)

    Article  Google Scholar 

  32. Wang, H., Kang, S., Feng, Z.: Finite-time adaptive fuzzy command filtered backstepping control for a class of nonlinear systems. Int. J. Fuzzy Syst. 21, 2575–2587 (2019)

    Article  MathSciNet  Google Scholar 

  33. Diao, S., Sun, W., Wang, L., Wu, J.: Finite-time adaptive fuzzy control for nonlinear systems with unknown backlash-like hysteresis. Int. J. Fuzzy Syst. 23, 2037–2047 (2021)

    Article  Google Scholar 

  34. Du, H., Zhu, W., Wen, G., Wu, D.: Finite-time formation control for a group of quadrotor aircraft. Aerosp. Sci. Technol. 69, 609–616 (2017)

    Article  Google Scholar 

  35. Tian, B., Cui, J., Lu, H., Zuo, Z., Zong, Q.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. IEEE Trans. Ind. Electron. 66(12), 9428–9438 (2019)

    Article  Google Scholar 

  36. Chen, Q., Ye, Y., Hu, Z., Na, J., Wang, S.: Finite-time approximation-free attitude control of quadrotors: theory and experiments. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1780–1792 (2021)

    Article  Google Scholar 

  37. Eliker, K., Grouni, S., Tadjine, M., Zhang, W.: Practical finite time adaptive robust flight control system for quad-copter UAVs. Aerosp. Sci. Technol. 98, 105708 (2020)

    Article  Google Scholar 

  38. Mofid, O., Mobayen, S.: Adaptive finite-time back-stepping global sliding mode tracker of quad-rotor UAVs under model uncertainty, wind perturbation and input saturation. IEEE Trans. Aerosp. Electron. Syst. (2021). https://doi.org/10.1109/TAES.2021.3098168

    Article  Google Scholar 

  39. Lanzon, A., Freddi, A., Longhi, S.: Flight control of a quadrotor vehicle subsequent to a rotor failure. J. Guid. Control Dyn. 37(2), 580–591 (2014)

    Article  Google Scholar 

  40. Chen, F., Jiang, R., Zhang, K., Jiang, B., Tao, G.: Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 63(8), 5044–5056 (2016)

    Google Scholar 

  41. Hao, W., Xian, B.: Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonlinear Dyn. 90, 2813–2826 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yu, Z., Liu, Z., Zhang, Y., Qu, Y., Su, C.Y.: Distributed finite-time fault-tolerant containment control for multiple unmanned aerial vehicles. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 2077–2091 (2020)

    Article  MathSciNet  Google Scholar 

  43. Liu, K., Wang, R., Wang, X., Wang, X.: Anti-saturation adaptive finite-time neural network based fault-tolerant tracking control for a quadrotor UAV with external disturbances. Aerosp. Sci. Technol. 115, 106790 (2021)

    Article  Google Scholar 

  44. Yu, Z., Zhang, Y., Liu, Z., Qu, Y., Su, C.Y., Jiang, B.: Decentralized finite-time adaptive fault-tolerant synchronization tracking control for multiple UAVs with prescribed performance. J. Frankl. Inst. 357(16), 11830–11862 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li, Y., Ma, Z., Tong, S.: Adaptive fuzzy fault-tolerant control of nontriangular structure nonlinear systems with error constraint. IEEE Trans. Fuzzy Syst. 26(4), 2062–2074 (2018)

    Article  Google Scholar 

  46. Wang, L.: Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  47. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2017)

    Article  Google Scholar 

  48. Yu, J., Shi, P., Zhao, L.: Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 46(7), 1061–1079 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G., Littlewood, D.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  51. Cui, G., Yu, J., Wang, Q.G.: Finite-time adaptive fuzzy control for mimo nonlinear systems with input saturation via improved command-filtered backstepping. IEEE Trans. Syst. Man Cybern.: Syst. 52(2), 980–989 (2022)

    Article  Google Scholar 

  52. Wang, X., Chen, Z., Yang, G.: Finite-time-convergent differentiator based on singular perturbation technique. IEEE Trans. Autom.Control 52(9), 1731–1737 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Qi, W., Aliverti, A.: A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity. IEEE J. Biomed. Health Inform. 24(8), 2199–2207 (2020)

    Article  Google Scholar 

  54. Qi, W., Ovur, S.E., Li, Z., Marzullo, A., Song, R.: Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network. IEEE Robot. Autom. Lett. 6(3), 6039–6045 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Fund for Excellent Young Scholars of Jiangsu Province under Grant BK20211605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozeng Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Cui, G., Li, Z. et al. Fuzzy Approximation-Based Adaptive Finite-Time Tracking Control for a Quadrotor UAV with Actuator Faults. Int. J. Fuzzy Syst. 24, 3756–3769 (2022). https://doi.org/10.1007/s40815-022-01361-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01361-5

Keywords

Navigation