Skip to main content

Advertisement

Log in

A Fuzzy Logic Approach for Predicting Efficient LoRa Communication

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

With the anticipated increment in connected devices for the Internet of Things (IoT) applications, ensuring low power consumption with long-range data transmission is needed. An low power wide area network (LPWAN) technology is well suited to fulfill this requirement. LoRa is known to customize its physical layer settings to achieve desired transmission range, coverage, and energy consumption. For large-scale realistic deployments, LoRa based Industrial IoT (IIoT) solution needs to offer configurable granularity and compatibility with legacy systems and processes. However, the requirement of a seam-less handoff across end-to-end (E2E) systems is usually based on dense short-range wireless systems. As IIoT applications typically experience varying environmental conditions, we consider four scenarios, namely line-of-sight (LOS), non-LOS (NLOS), obstruction, and conventional environment, to present the variation in the network efficiency (NE). This paper aims to implement the fuzzy inference system algorithm as a controller in an IIoT-based based application. The Mamdani fuzzy inference system algorithm is implemented on the gateway node that receives sensor values and computes network parameters to predict NE. The result of the FIS is then analyzed for tuning hardware settings on LoRa nodes. These settings are then propagated to the actuator nodes to set optimal tuning of the spreading factor, bandwidth, and coding rate for maximizing lifetime and optimizing data flow. We also study and ascertain that the parameters under different network conditions need to be observed to interpret the results predicted from the FIS model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Consent for Publication

Not applicable.

References

  1. Islam, B., Islam, M.T., Kaur, J., Nirjon, S.: LoRaIn: making a case for LoRa in indoor localization. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 423–426. IEEE (2019). https://doi.org/10.1109/PERCOMW.2019.8730767

  2. Bor, M.C., Roedig, U., Voigt, T., Alonso, J.M.: Do LoRa low-power wide-area networks scale? In: Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 59–67 (2016). https://doi.org/10.1145/2988287.2989163

  3. Slabicki, M., Premsankar, G., Di Francesco, M.: Adaptive configuration of LoRa networks for dense IoT deployments. In: NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium, pp. 1–9. IEEE (2018). https://doi.org/10.1109/NOMS.2018.8406255

  4. Callebaut, G., Van der Perre, L.: Characterization of LoRa point-to-point path loss: measurement campaigns and modeling considering censored data. IEEE Internet Things J. 7(3), 1910–1918 (2019). https://doi.org/10.1109/JIOT.2019.2953804

    Article  Google Scholar 

  5. Le, X.-C., Vrigneau, B., Gautier, M., Mabon, M., Berder, O.: Energy/reliability trade-off of LoRa communications over fading channels. In: 2018 25th International Conference on Telecommunications (ICT), pp. 544–548. IEEE (2018). https://doi.org/10.1109/ICT.2018.8464929

  6. Staniec, K., Kowal, M.: LoRa performance under variable interference and heavy-multipath conditions. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/6931083

    Article  Google Scholar 

  7. William, S.: Wireless Communications and Networks. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  8. Yang, X., Weifeng, L., Liu, W., Tao, D.: A survey on canonical correlation analysis. IEEE Trans. Knowl. Data Eng. (2019). https://doi.org/10.1109/TKDE.2019.2958342

    Article  Google Scholar 

  9. Sherry, A., Henson, R.K.: Conducting and interpreting canonical correlation analysis in personality research: a user-friendly primer. J. Personal. Assess. 84(1), 37–48 (2005). https://doi.org/10.1207/s15327752jpa8401_09

    Article  Google Scholar 

  10. Wang, H.-T., Smallwood, J., Mourao-Miranda, J., Xia, C.H., Satterthwaite, T.D., Bassett, D.S., Bzdok, D.: Finding the needle in a high-dimensional haystack: canonical correlation analysis for neuroscientists. NeuroImage 216, 116745 (2020). https://doi.org/10.1016/j.neuroimage.2020.116745

    Article  Google Scholar 

  11. Sadoughi, F., Afshar, H.L., Olfatbakhsh, A., Mehrdad, N.: Application of canonical correlation analysis for detecting risk factors leading to recurrence of breast cancer. Iran. Red Crescent Med. J. (2016). https://doi.org/10.5812/ircmj.23131

    Article  Google Scholar 

  12. Huang, H.-B., Yi, T.-H., Li, H.-N.: Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks. Smart Struct. Syst. 17(6), 1031–1053 (2016)

    Article  Google Scholar 

  13. Saputra, D., Rohmat, A., Najmurrokhman, A., Fakhri, Z.: Implementation of fuzzy inference system algorithm in brooding system simulator with the concept of IoT and wireless nodes. IOP Conf. Ser. Mater. Sci. Eng. 830, 032038 (2020). https://doi.org/10.1088/1757-899X/830/3/032038

    Article  Google Scholar 

  14. Alakhras, M., Oussalah, M., Hussein, M.: A survey of fuzzy logic in wireless localization. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–45 (2020). https://doi.org/10.1186/s13638-020-01703-7

    Article  Google Scholar 

  15. Hosseinzadeh, S., Larijani, H., Curtis, K., Wixted, A.: An adaptive neuro-fuzzy propagation model for LoRaWAN. Appl. Syst. Innov. 2(1), 10 (2019). https://doi.org/10.3390/asi2010010

    Article  Google Scholar 

  16. Di Renzone, G., Fort, A., Mugnaini, M., Pozzebon, A., Vignoli, V.: Data transmission from ATEX boxes by means of LoRa technology for industrial internet of things (IIoT) applications. In: 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6. IEEE (2021). https://doi.org/10.1109/I2MTC50364.2021.9459915

  17. Sherazi, H.H.R., Grieco, L.A., Imran, M.A., Boggia, G.: Energy-efficient LoRaWAN for industry 4.0 applications. IEEE Trans. Ind. Inform. 17(2), 891–902 (2020). https://doi.org/10.1109/TII.2020.2984549

    Article  Google Scholar 

  18. Magrin, D., Capuzzo, M., Zanella, A., Vangelista, L., Zorzi, M.: Performance analysis of LoRaWAN in industrial scenarios. IEEE Trans. Ind. Inform. (2020). https://doi.org/10.1109/TII.2020.3044942

    Article  Google Scholar 

  19. Pötsch, A., Hammer, F.: Towards end-to-end latency of LoRaWAN: experimental analysis and IIoT applicability. In: 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 1–4. IEEE (2019). https://doi.org/10.1109/WFCS.2019.8758033

  20. Zorbas, D., Abdelfadeel, K., Kotzanikolaou, P., Pesch, D.: TS-LoRa: Time-slotted LoRaWAN for the industrial Internet of Things. Comput. Commun. 153, 1–10 (2020). https://doi.org/10.1016/j.comcom.2020.01.056

    Article  Google Scholar 

  21. Kharb, S., Singhrova, A.: Fuzzy based priority aware scheduling technique for dense industrial IoT networks. J. Netw. Comput. Appl. 125, 17–27 (2019). https://doi.org/10.1016/j.jnca.2018.10.004

    Article  Google Scholar 

  22. Krishnan, R.S., Julie, E.G., Robinson, Y.H., Raja, S., Kumar, R., Thong, P.H., et al.: Fuzzy logic based smart irrigation system using Internet of Things. J. Clean. Prod. 252, 119902 (2020)

    Article  Google Scholar 

  23. Meana-Llorián, D., García, C.G., G-bustelo, B.C.P., Lovelle, J.M.C., Garcia-Fernandez, N.: IoFClime: the fuzzy logic and the Internet of Things to control indoor temperature regarding the outdoor ambient conditions. Future Gener. Comput. Syst. 76, 275–284 (2017)

    Article  Google Scholar 

  24. LoRa Alliance: A Technical Overview of LoRa and LoRaWAN. White Paper, 20 November. LoRa Alliance (2015)

  25. Bor, M., Roedig, U.: LoRa transmission parameter selection. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 27–34. IEEE (2017). https://doi.org/10.1109/DCOSS.2017.10

  26. Lim, J.-T., Han, Y.: Spreading factor allocation for massive connectivity in LoRa systems. IEEE Commun. Lett. 22(4), 800–803 (2018). https://doi.org/10.1109/LCOMM.2018.2797274

    Article  MathSciNet  Google Scholar 

  27. Voigt, T., Bor, M., Roedig, U., Alonso, J.: Mitigating inter-network interference in LoRa networks (2016). arXiv preprint arXiv:1611.00688

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Sahana.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Snigdh, I. & Sahana, S.K. A Fuzzy Logic Approach for Predicting Efficient LoRa Communication. Int. J. Fuzzy Syst. 24, 2591–2599 (2022). https://doi.org/10.1007/s40815-021-01233-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01233-4

Keywords

Navigation