Skip to main content
Log in

Fuzzy Adaptive Fault-Tolerant Control for a Class of Active Suspension Systems with Time Delay

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the fuzzy adaptive fault-tolerant control design problem for a class of electromagnetic active suspension systems. The change of the contact between the tire and the ground is studied to increase the vehicle stability in the presence parameter uncertainties. Meanwhile, considering the nonlinearity of the spring in the suspension space, the characteristics of the damper are studied to form the basis of accurate control. Furthermore, unknown time-varying delay and dynamic abrupt fault are considered, which helps deal with emergencies and transmission delays. Fuzzy logic systems (FLSs) are utilized to identify the unknown dynamics. On the basis of Lyapunov stability theory, it is proved that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB). Finally, the simulation results verify the feasibility and effectiveness of the proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tamboli, J.A., Joshi, S.G.: Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. J. Sound Vibrat. 219(2), 193–205 (1999)

    Article  Google Scholar 

  2. Naud, A.F., Snyman, J.A.: Optimisation of road vehicle passive suspension systems. Part 2. Qualification and case study. Appl. Math. Model. 27(4), 263–274 (2003)

    Article  MATH  Google Scholar 

  3. Xie, X.J., Zhang, X.H., Zhang, K.M.: Finite-time state feedback stabilization of stochastic high-order nonlinear feedforward systems. Int. J. Control 89(7), 1332–1341 (2016)

    Article  MATH  Google Scholar 

  4. Fu, J., Ma, R.C., Chai, T.Y.: Finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings. IEEE Trans. Autom. Control 62(11), 5998–6003 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, H.Q., Liu, P.X.P., Zhao, X.D., Liu, X.P.: Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2902868

    Google Scholar 

  6. Li, Z.J., Zhao, T., Hu, Y.B., Chen, F., Su, C.Y., Fukuda, T.: Reinforcement learning of manipulation and grasping using dynamical movement primitives for a humanoid-like mobile manipulator. IEEE/ASME Trans. Mech. 23(1), 121–131 (2018)

    Article  Google Scholar 

  7. Peng, Z.H., Wang, J., Han, Q.L.: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Ind. Elect. (2018). https://doi.org/10.1109/TIE.2018.2885726

    Google Scholar 

  8. Peng, Z.H., Wang, J.S., Wang, J.: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans. Ind. Elect. 66(5), 3627–3635 (2019)

    Article  Google Scholar 

  9. Li, Z.J., Huang, B., Ajoudani, A., Yang, C.G., Su, C.Y., Bicchi, A.: Asymmetric bimanual coordinate control of dual-arm exoskeleton robots for human cooperative manipulations. IEEE Trans. Robot. 34(1), 264–271 (2018)

    Article  Google Scholar 

  10. Peng, Z.H., Wang, D., Li, T.S., Han, M.: Output feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2914717

    Google Scholar 

  11. Li, Z.J., Huang, B., Ye, Z.F., Deng, M.D., Yang, C.G.: Physical human–robot interaction of a robotic exoskeleton by admittance control. IEEE Trans. Ind. Elect. 65(12), 9614–9624 (2018)

    Article  Google Scholar 

  12. Du, H., Zhang, N.: \({H_\infty }\) control of active vehicle suspensions with actuator time delay. J. Sound Vibrat. 301(1), 236–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Amirifa, R., Sadati, N.: Low-order \({H_\infty }\) controller design for an active suspension system via LMIs. IEEE Trans. Ind. Elect. 53(2), 554–560 (2006)

    Article  Google Scholar 

  14. Guo, L.X., Zhang, L.Y.: Robust \({H_\infty }\) control of active vehicle suspension under nonstationary running. J. Sound Vibrat. 331(26), 5824–5837 (2012)

    Article  Google Scholar 

  15. Du, H., Kam, Y.S., James, L.: Semi-active \({H_\infty }\) control of vehicle suspension with magneto-rheological dampers. J. Sound Vibrat. 283(3), 981–996 (2005)

    Article  Google Scholar 

  16. Sun, W.C., Gao, H.J., Kaynak, O.: Finite frequency \({H_\infty }\) control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 19(2), 416–422 (2011)

    Article  Google Scholar 

  17. Huang, Y.B., Na, J., Gao, G.B., Wu, X., Guo, Y.: Robust adaptive control for vehicle active suspension systems with uncertain dynamics. Trans. Inst. Meas. Control 40(4), 1237–1249 (2018)

    Article  Google Scholar 

  18. Sun, W.C., Pan, H.H., Gao, H.J.: Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Vehicle Technol. 65(6), 4619–4626 (2016)

    Article  Google Scholar 

  19. Lin, J., Huang, C.: Nonlinear backstepping active suspension design applied to a half-car mode. Vehicle Syst. Dyn. 42(6), 373–393 (2004)

    Article  Google Scholar 

  20. Sun, W.C., Gao, H.J., Yao, B.: Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417–2422 (2013)

    Article  Google Scholar 

  21. Sun, W.C., Zhao, Z.L., Gao, H.J.: Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Elect. 60(9), 3889–3896 (2013)

    Article  Google Scholar 

  22. Sun, W.C., Li, J., Zhao, Y., Gao, H.J.: Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic. Mechatronics 21(1), 250–260 (2011)

    Article  Google Scholar 

  23. Wang, H.Q., Liu, P.X.P., Xie, X.J., Liu, X.P., Hayat, T., Alsaadi, F.E.: Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator. Inform. Sci. (2018). https://doi.org/10.1016/j.ins.2018.04.011

    Google Scholar 

  24. Wang, H.Q., Liu, P.X.P., Bao, J.L., Xie, X.J., Li, S.: Adaptive neural output-feedback decentralized control for large-scale nonlinear systems with stochastic disturbances. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2912082

    Google Scholar 

  25. Zhang, T., Chen, C.L.P., Chen, L., Xu, X., Hu, B.: Design of highly nonlinear substitution boxes based on I-Ching operators. IEEE Trans. Cybern. 48(12), 3349–3358 (2018)

    Article  Google Scholar 

  26. Chen, C.L.P., Zhang, T., Chen, L., Tam, S.C.: I-Ching divination evolutionary algorithm and its convergence analysis. IEEE Trans. Cybern. 47(1), 2–13 (2017)

    Article  Google Scholar 

  27. Sunwoo, M., Cheok, K., Huang, N.: Model reference adaptive control for vehicle active suspension systems. IEEE Trans. Ind. Elect. 38(3), 217–222 (1991)

    Article  Google Scholar 

  28. Huang, S., Chen, H.: Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics 16(10), 607–622 (2006)

    Article  Google Scholar 

  29. Fialho, I., Balas, G.: Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans. Control Syst. Technol. 10(1), 43–54 (2002)

    Article  Google Scholar 

  30. Sun, W.C., Gao, H.J., Kaynak, O.: Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Trans. Mech. 18(3), 1072–1079 (2013)

    Article  Google Scholar 

  31. Huang, Y.B., Na, J., Wu, X., Liu, X., Guo, Y.: Adaptive control of nonlinear uncertain active suspension systems with prescribed performance. ISA Trans. 54, 145–155 (2015)

    Article  Google Scholar 

  32. Na, J., Huang, Y.B., Wu, X., Gao, G., Herrmann, G., Jiang, J.: Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans. Control Syst. Technol. 99, 1–15 (2017)

    Google Scholar 

  33. Li, P., Yang, G.H.: Backstepping adaptive fuzzy control of uncertain nonlinear systems against actuator faults. Control Theory Appl. 7(3), 248–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, L., Wang, Z.S., Zhang, H.G.: Data-based adaptive fault estimation and fault-tolerant control for MIMO model-free systems using generalized fuzzy hyperbolic model. IEEE Trans. Fuzzy Syst. 26(6), 3191–3205 (2018)

    Article  Google Scholar 

  35. Li, Y.M., Ma, Z.Y., Tong, S.C.: Adaptive fuzzy fault-tolerant control of nontriangular structure nonlinear systems with error constraint. IEEE Trans. Fuzzy Syst. 26(4), 2062–2074 (2018)

    Article  Google Scholar 

  36. Tong, S.C., Sui, S., Li, Y.M.: Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics. Inform. Sci. 289, 225–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, Q.K., Jiang, B., Cocquempot, V.: Adaptive fault-tolerant backstepping control against actuator gain faults and its applications to an aircraft longitudinal motion dynamics. Int. J. Robust Nonlinear Control 23(15), 1753–1779 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Shen, Q.K., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2014)

    Article  Google Scholar 

  39. Chamseddine, A., Noura, H.: Control and sensor fault tolerance of vehicle active suspension. IEEE Trans. Control Syst. Technol. 16(3), 416–433 (2008)

    Article  Google Scholar 

  40. Li, H.Y., Pan, Y.N., Yu, Z.D., Zhao, X.D., Yang, X.B.: Fuzzy output-feedback control for non-linear systems with input time-varying delay. IET Control Theory Appl. 8(9), 738–745 (2014)

    Article  MathSciNet  Google Scholar 

  41. Li, H.Y., Chen, B., Zhou, Q., Su, Y.: New results on delay-dependent robust stability of uncertain time delay systems. Int. J. Syst. Sci. 41(6), 627–634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xie, X.J., Li, Z.J., Zhang, K.M.: Semi-global output feedback control for nonlinear systems with uncertain time-delay and output function. Int. J. Robust Nonlinear Control 27(15), 2549–2566 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, B., Lin, C., Liu, X.P., Liu, K.F.: Fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form. IEEE Trans. Cybern. 45(12), 2744–2755 (2015)

    Article  Google Scholar 

  44. Li, Y.M., Tong, S.C., Li, T.S.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  45. Ji, H.B., Xi, H.S.: Adaptive output-feedback tracking of stochastic nonlinear systems. IEEE Trans. Autom. Control 51(2), 355–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, Y.M., Tong, S.C., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, L.K., Lam, H.K.: A new approach to stability and stabilization analysis for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465 (2018)

    Article  Google Scholar 

  48. Wang, L.K., Lam, H.K.: New stability criterion for continuous-time Takagi–Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cybern. 49(4), 1551–1556 (2019)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 61822307 and 61773188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F., Sun, H., Li, Y. et al. Fuzzy Adaptive Fault-Tolerant Control for a Class of Active Suspension Systems with Time Delay. Int. J. Fuzzy Syst. 21, 2054–2065 (2019). https://doi.org/10.1007/s40815-019-00719-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00719-6

Keywords

Navigation