Skip to main content
Log in

Investigation on Reinforcement Incorporation Factor and Microstructure of Al 7075/Submicron-TiB2 Metal Matrix Composites Processed through a Modified Liquid Metallurgy Technique

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In this paper 0.8, 1.2, 1.6 and 2 wt.% of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites (MMCs) were fabricated following a modified liquid metallurgy technique, which included ball milling, semi-solid stirring and ultrasonic agitation assisted squeeze casting method. Objective was to investigate their reinforcement incorporation factors (RIFs), microstructure through optical microscopy (OM) and scanning electron microscopy (SEM), and phase identification through X-ray diffraction (XRD) analysis. Phase distribution of different elements was analyzed through energy dispersive X-ray spectroscopy (EDS), and spatial distributions of elemental constituents were verified through elemental mapping. Mechanisms of TiB2 particulate dispersion and cluster segregation were highlighted. Results revealed excellent incorporation and dispersion uniformity of the reinforcements in the matrix phase. Squeeze casting process promoted the heterogeneous nucleation rate and rapid solidification, which resulted formation of Al-Zn-Mg-Cu based compounds in the dendritic regions. Occasional formation of reaction by-products (Al4C3) was observed at the interface of 1.2 wt.% TiB2 reinforced MMC. Reduction of precipitates and large grain refinements were observed for the MMC containing 1.6 wt.% of TiB2. In the microstructure of Al 7075/2 wt.% TiB2 MMC, superior dispersion of reinforcements at grain boundaries and inter-dendritic regions, along with presence of metastable η-MgZn2 phases was identified. Crystalline phase identification of all the composite samples was also performed through XRD analysis, which validated the elemental phase distribution results of EDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Selvakumar N, Gnanasundarajayaraja B, Rajeshkumar P (2016) Enhancing the properties of Al–WC nanocomposites using liquid metallurgy. Exp Tech 40(1):129–135

    Article  Google Scholar 

  2. Karthikeyan R, Balasubramanian V (2013) Statistical optimization and sensitivity analysis of friction stir spot welding process parameters for joining AA 7075 aluminum alloy. Exp Tech 37(2):6–15

    Article  Google Scholar 

  3. Rashad M, Pan F, Asif M (2015) Room temperature mechanical properties of mg–cu–Al alloys synthesized using powder metallurgy method. Mater Sci Eng A 644:129–136

    Article  CAS  Google Scholar 

  4. Jun GOU, Tang AT, Pan FS, Jia SHE, Luo SQ, Ye JH, Shi DW, Rashad M (2016) Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets. Trans Nonferrous Metals Soc China 26(8):2051–2057

    Article  CAS  Google Scholar 

  5. Rashad M, Pan F, Tang A, Lu Y, Asif M, Hussain S, She J, Gou J, Mao J (2013) Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys. J Magnes alloy 1(3):242–248

    Article  CAS  Google Scholar 

  6. Rashad M, Pan F, Asif M, Li L (2015) Enhanced ductility of Mg–3Al–1Zn alloy reinforced with short length multi-walled carbon nanotubes using a powder metallurgy method. Progress Nat Sci: Mater Int 25(4):276–281

    Article  CAS  Google Scholar 

  7. Das D, Mishra PC, Singh S, Thakur RK (2015) Tool wear in turning ceramic reinforced aluminum matrix composites-A review. J Compos Mater 49(24):2949–2961

    Article  CAS  Google Scholar 

  8. Saravanan MS, Babu SK, Sivaprasad K (2014) Mechanical properties and corrosion behavior of carbon nanotubes reinforced AA 4032 nanocomposites. Exp Tech 38(1):48–52

    Article  Google Scholar 

  9. Ekinci VS, Bağci C, Arik H (2014) Effect of Al2O3 content and milling time on microstructure and mechanical properties of aluminum metal matrix composites. Exp Tech 38(2):66–73

    Article  Google Scholar 

  10. Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abedi HR (2011) An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des 32(4):2339–2344

    Article  CAS  Google Scholar 

  11. Xu D, Li Z, Wang G, Li X, Lv X, Fan Y, Xiong B (2017) Phase transformation and microstructure evolution of an ultra-high strength Al-Zn-Mg-Cu alloy during homogenization. Mater Charact 131:285–297

    Article  CAS  Google Scholar 

  12. Khalil AM, Loginova IS, Pozdniakov AV, Mosleh AO, Solonin AN (2019) Evaluation of the microstructure and mechanical properties of a new modified cast and laser-melted AA7075 alloy. Materials 12(20):3430

    Article  CAS  Google Scholar 

  13. Ghosh A, Ghosh M (2018) Microstructure and texture development of 7075 alloy during homogenisation. Philos Mag 98(16):1470–1490

    Article  CAS  Google Scholar 

  14. Huo W, Hou L, Lang Y, Cui H, Zhuang L, Zhang J (2015) Improved thermo-mechanical processing for effective grain refinement of high-strength AA 7050 Al alloy. Mater Sci Eng A626:86–93

    Article  CAS  Google Scholar 

  15. Birol Y (2007) Production of Al–Ti–B master alloys from Ti sponge and KBF4. J Alloys Compd 440(1–2):108–112

    Article  CAS  Google Scholar 

  16. Wrobel T (2011) Review of inoculation methods of pure aluminium primary structure. Arch Mater Sci Eng 50(2):110–119

    Google Scholar 

  17. Ghosh A, Ghosh M, Seikh AH, Alharthi NH (2020) Phase transformation and dispersoid evolution for Al-Zn-Mg-Cu alloy containing Sn during homogenisation. J Mater Res Technol 9(1):1–12

    Article  CAS  Google Scholar 

  18. Yang X, Li YD, Luo XM, Zhou HW, Cai QY, Li M, Ma Y (2019) Microstructural evaluation and mechanical properties of 7075 aluminum alloy prepared by controlled diffusion solidification. China Foundry 16(4):238–247

    Article  Google Scholar 

  19. Tee KL, Lu L, Lai MO (1999) Synthesis of in situ Al–TiB2 composites using stir cast route. Compos Struct 47(1–4):589–593

    Article  Google Scholar 

  20. Wu L, Li X, Han G, Deng Y, Ma N, Wang H (2017) Precipitation behavior of the high-Li-content in-situ TiB2/Al-Li-cu composite. Mater Charact 132:215–222

    Article  CAS  Google Scholar 

  21. Rane K, Dhokey N (2018) On the formation and distribution of in situ synthesized TiB2 reinforcements in cast aluminium matrix composites. J Compos Sci 2(3):52

    Article  CAS  Google Scholar 

  22. Li H, Wang X, Chai L, Wang H, Chen Z, Xiang Z, Jin T (2018) Microstructure and mechanical properties of an in-situ TiB2/Al-Zn-mg-cu-Zr composite fabricated by melt-SHS process. Mater Sci Eng A720:60–68

    Article  CAS  Google Scholar 

  23. Pazhouhanfar Y, Eghbali B (2018) Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater Sci Eng A710:172–180

    Article  CAS  Google Scholar 

  24. Lee J, Jung JY, Lee ES, Kim NJ, Ahn S (1998) Strengthening mechanism of a spray-formed Cu-TiB2 composite. Met Mater 4(4):610–615

    Article  CAS  Google Scholar 

  25. Gyawali G, Cho SH, Lee SW (2013) Electrode position and characterization of Ni-TiB2 composite coatings. Met Mater Int 19(1):113–118

    Article  CAS  Google Scholar 

  26. Lee DB (2002) Effect of SiC, Si3N4 and TiB2 additions on the oxidation resistance of TiAl alloys. Met Mater Int 8(1):69–75

    Article  CAS  Google Scholar 

  27. Akbari MK, Shirvanimoghaddam K, Hai Z, Zhuiykov S, Khayyam H (2017) Nano TiB2 and TiO2 reinforced composites: a comparative investigation on strengthening mechanisms and predicting mechanical properties via neural network modeling. Ceram Int 43(18):16799–16810

    Article  CAS  Google Scholar 

  28. Ozdin K (2014) Production of metal matrix composites by the vortex method and investigation of the effect of changing casting temperature on particles ratio of product-composite. Exp Tech 38(6):16–20

    Article  Google Scholar 

  29. Rajan HM, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445

    Article  CAS  Google Scholar 

  30. Gan GS, Yang B, Gao Q, Wu Y, Yang MB (2016) Microstructure and viscosity of particles reinforced 7075 Al matrix composites. Mater Trans 57(8):1296–1299

    Article  CAS  Google Scholar 

  31. Chandana A, Lawrence ID, Jayabal S (2018) Characterization of particulate-reinforced aluminium 7075/TiB2 composites. Mater Today: Proc 5(6):14317–14326

    CAS  Google Scholar 

  32. Ku MH, Hung FY, Lui TS, Chen LH (2012) Effect of tool rotational speed on the microstructures and tensile properties of 7075 aluminum alloy via Friction Stir Process (FSP). Light Metals:475–480

  33. Xi L, Kaban I, Nowak R, Korpala B, Bruzda G, Sobczak N, Mattern N, Eckert J (2015) High-temperature wetting and interfacial interaction between liquid Aland TiB2 ceramic. J Mater Sci 50(7):2682–2690

    Article  CAS  Google Scholar 

  34. Akbari MK, Shirvanimoghaddam K, Hai Z, Zhuiykov S, Khayyam H (2017) Al-TiB2 micro/nanocomposites: particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater Sci Eng A682:98–106

    Article  CAS  Google Scholar 

  35. Chen Z, Sun GA, Wu Y, Mathon MH, Borbely A, Chen D, Ji G, Wang ML, Zhong SY, Wang HW (2017) Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites. Mater Des 116:577–590

    Article  CAS  Google Scholar 

  36. Robson JD (2004) Microstructural evolution in aluminum alloy 7050 during processing. Mater Sci Eng A 382(1–2):112–121

    Article  CAS  Google Scholar 

  37. Ghiaasiaan R, Zeng X, Shankar S (2014) Controlled diffusion solidification (CDS) of Al- Zn-Mg-Cu (7050): microstructure, heat treatment and mechanical properties. Mater Sci Eng A 594:260–277

    Article  CAS  Google Scholar 

  38. Ghiaasiaan R, Amirkhiz BS, Shankar S (2017) Quantitative metallography of precipitating and secondary phases after strengthening treatment of net shaped casting of Al-Zn-Mg-Cu (7000) alloys. Mater Sci Eng A698:206–217

    Article  CAS  Google Scholar 

  39. Fan X, Jiang D, Meng Q, Zhong L (2006) The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization. Mater Lett 60(12):1475–1479

    Article  CAS  Google Scholar 

  40. Liu Z, Han Q, Li J (2012) A developed method for producing in situ TiC/Al composites by using quick preheating treatment and ultrasonic vibration. Compos Part B 43(5):2429–2433

    Article  CAS  Google Scholar 

  41. Liu Z, Han Q, Li J, Huang W (2012) Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al–12Si–4Cu composites. J Mater Process Technol 212(2):365–371

    Article  CAS  Google Scholar 

  42. Fard HSP, Baharvandi HR, Abdizadeh H, Shahbahrami B (2008) Chemical synthesis of nano-titanium diboride powders by borothermic reduction. Int J Mod Phys B 22(18–19):3179–3184

    Article  CAS  Google Scholar 

  43. Chen XH, Yan H (2016) Solid–liquid interface dynamics during solidification of Al 7075–Al2O3np based metal matrix composites. Mater Des 94:148–158

    Article  CAS  Google Scholar 

  44. Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101(1–3):1–9

    Article  Google Scholar 

  45. Fan CH, Chen ZH, He WQ, Chen JH, Chen D (2010) Effects of the casting temperature on microstructure and mechanical properties of the squeeze-cast Al–Zn–Mg–Cu alloy. J Alloys Compd 504(2):L42–L45

    Article  CAS  Google Scholar 

  46. Kannan C, Ramanujam R (2017) Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res 8(4):309–319

    Article  CAS  Google Scholar 

  47. Schaffer PL, Miller DN, Dahle AK (2007) Crystallography of engulfed and pushed TiB2 particles in aluminium. Scr Mater 57(12):1129–1132

    Article  CAS  Google Scholar 

  48. Mondal C, Mukhopadhyay AK (2005) On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater Sci Eng A 391(1–2):367–376

    Article  CAS  Google Scholar 

  49. Zhu HG, Wang HZ, Ge LQ, Shi CHEN, Wu SQ (2007) Formation of composites fabricated by exothermic dispersion reaction in Al-TiO2-B2O3 system. Trans Nonferrous Metals Soc China 17(3):590–594

    Article  Google Scholar 

  50. Murty BS, Kori SA, Chakraborty M (2002) Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int Mater Rev 47(1):3–29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Das.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, B., Das, D. Investigation on Reinforcement Incorporation Factor and Microstructure of Al 7075/Submicron-TiB2 Metal Matrix Composites Processed through a Modified Liquid Metallurgy Technique. Exp Tech 45, 179–193 (2021). https://doi.org/10.1007/s40799-020-00429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-020-00429-x

Keywords

Navigation