Skip to main content

Advertisement

Log in

Synergistic Development of Biochips and Cell Preservation Methodologies: a Tale of Converging Technologies

  • Artificial Tissues (A Atala and JG Hunsberger, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Over the past several decades, cryopreservation has been widely used to preserve cells during long-term storage, but advances in stem cell therapies, regenerative medicine, and miniaturized cell-based diagnostics and sensors are providing new targets of opportunity for advancing preservation methodologies. The advent of microfluidic-based devices is an interesting case in which the technology has been used to improve preservation processing, but as the devices have evolved to also include cells, tissues, and simulated organs as part of the architecture, the biochip itself is a desirable target for preservation. In this review, we will focus on the synergistic co-development of preservation methods and biochip technologies while identifying where the challenges and opportunities lie in developing methods to place on-chip biologics on the shelf, ready for use.

Recent Findings

Emerging studies are demonstrating that the cost of some biochips have been reduced to the extent that they will have high utility in point-of-care settings, especially in low resource environments where diagnostic capabilities are limited. Ice-free low temperature vitrification and anhydrous vitrification technologies will likely emerge as the preferred strategy for long-term preservation of bio-chips.

Summary

The development of preservation methodologies for partially or fully assembled biochips would enable the widespread distribution of these technologies and enhance their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hanna J, Hubel A. Preservation of stem cells. Organogenesis. 2009;5(3):134–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hunt CJ. Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother. 2011;38(2):107–23. doi:10.1159/000326623.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roh KH, Nerem RM, Roy K. Biomanufacturing of therapeutic cells: state of the art, current challenges, and future perspectives. Annu Rev Chem Biomol Eng. 2016;7:455–78. doi:10.1146/annurev-chembioeng-080615-033559.

    Article  CAS  PubMed  Google Scholar 

  4. Ramos TV, Mathew AJ, Thompson ML, Ehrhardt RO. Standardized cryopreservation of human primary cells. Curr Protoc Cell Biol. 2014;64:A3I1–8. doi:10.1002/0471143030.cba03is64.

    Article  Google Scholar 

  5. Mazur P. Causes of injury in frozen and thawed cells. Fed Proc. 1965;24:S175–82.

    CAS  PubMed  Google Scholar 

  6. Mazur P. Freezing of living cells: mechanisms and implications. Am J Phys. 1984;247(3 Pt 1):C125–42.

    CAS  Google Scholar 

  7. McGrath JJ. A microscope diffusion chamber for the determination of the equilibrium and non-equilibrium osmotic response of individual cells. J Microsc. 1985;139(Pt 3):249–63.

    Article  CAS  PubMed  Google Scholar 

  8. Diller KR, Cravalho EG. A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology. 1970;7(4):191–9.

    CAS  PubMed  Google Scholar 

  9. Diller KR. Quantitative low temperature optical microscopy of biological systems. J Microsc. 1982;126(Pt 1):9–28.

    Article  CAS  PubMed  Google Scholar 

  10. Toner M, Cravalho EG, Karel M. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J Appl Phys. 1990;67(3):1582–93. doi:10.1063/1.345670.

    Article  Google Scholar 

  11. Song YS, Moon S, Hulli L, Hasan SK, Kayaalp E, Demirci U. Microfluidics for cryopreservation. Lab Chip. 2009;9(13):1874–81. doi:10.1039/b823062e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lai D, Ding J, Smith GW, Smith GD, Takayama S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum Reprod. 2015;30(1):37–45. doi:10.1093/humrep/deu284.

    Article  CAS  PubMed  Google Scholar 

  13. Scherr T, Pursley S, Monroe WT, Nandakumar K. A numerical study on distributions during cryoprotectant loading caused by laminar flow in a microchannel. Biomicrofluidics. 2013;7(2):24104. doi:10.1063/1.4793714.

    Article  CAS  PubMed  Google Scholar 

  14. Rubinsky B. Principles of low temperature cell preservation. Heart Fail Rev. 2003;8(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  15. Choi JS, Lee BJ, Park HY, Song JS, Shin SC, Lee JC, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36(1):85–99. doi:10.1159/000374055.

    Article  CAS  PubMed  Google Scholar 

  16. Fuller BJ, Lane N, Benson EE. Life in the frozen state. Boca Raton, Fla.: CRC Press; 2004.

    Book  Google Scholar 

  17. Wolkers WF, Oldenhof H. Cryopreservation and freeze-drying protocols 3, illustrated ed. New York: Springer; 2014.

    Google Scholar 

  18. Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother. 2011;38(2):125–42. doi:10.1159/000327033.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pegg DE. Long-term preservation of cells and tissues: a review. J Clin Pathol. 1976;29(4):271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng Q. Hypothermic preservation of hepatocytes. Biotechnol Prog. 2003;19(4):1118–27. doi:10.1021/bp025628n.

    Article  CAS  PubMed  Google Scholar 

  21. Swioklo S, Constantinescu A, Connon CJ. Alginate-encapsulation for the improved hypothermic preservation of human adipose-derived stem cells. Stem Cells Transl Med. 2016;5(3):339–49. doi:10.5966/sctm.2015-0131.

    Article  CAS  PubMed  Google Scholar 

  22. Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1977;14(3):251–72.

    Article  CAS  PubMed  Google Scholar 

  23. Karlsson JO, Cravalho EG, Borel Rinkes IH, Tompkins RG, Yarmush ML, Toner M. Nucleation and growth of ice crystals inside cultured hepatocytes during freezing in the presence of dimethyl sulfoxide. Biophys J. 1993;65(6):2524–36. doi:10.1016/S0006-3495(93)81319-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muldrew K, McGann LE. Mechanisms of intracellular ice formation. Biophys J. 1990;57(3):525–32. doi:10.1016/S0006-3495(90)82568-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Areman EM, Sacher RA, Deeg HJ. Processing and storage of human bone marrow: a survey of current practices in North America. Bone Marrow Transplant. 1990;6(3):203–9.

    CAS  PubMed  Google Scholar 

  26. Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ. Cryopreservation of hematopoietic stem cells. Am J Hematol. 2007;82(6):463–72. doi:10.1002/ajh.20707.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carvalho KA, Cury CC, Oliveira L, Cattaned RI, Malvezzi M, Francisco JC, et al. Evaluation of bone marrow mesenchymal stem cell standard cryopreservation procedure efficiency. Transplant Proc. 2008;40(3):839–41. doi:10.1016/j.transproceed.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  28. Pal R, Hanwate M, Totey SM. Effect of holding time, temperature and different parenteral solutions on viability and functionality of adult bone marrow-derived mesenchymal stem cells before transplantation. J Tissue Eng Regen Med. 2008;2(7):436–44. doi:10.1002/term.109.

    Article  CAS  PubMed  Google Scholar 

  29. Reubinoff BE, Pera MF, Vajta G, Trounson AO. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod. 2001;16(10):2187–94.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Tan JC, Li LS. Comparison of three methods for cryopreservation of human embryonic stem cells. Fertil Steril. 2010;93(3):999–1005. doi:10.1016/j.fertnstert.2008.10.052.

    Article  PubMed  Google Scholar 

  31. Iwatani M, Ikegami K, Kremenska Y, Hattori N, Tanaka S, Yagi S, et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells. 2006;24(11):2549–56. doi:10.1634/stemcells.2005-0427.

    Article  CAS  PubMed  Google Scholar 

  32. Wang HY, Lun ZR, Lu SS. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide. Cryo Letters. 2011;32(1):81–8.

    PubMed  Google Scholar 

  33. Grein TA, Freimark D, Weber C, Hudel K, Wallrapp C, Czermak P. Alternatives to dimethylsulfoxide for serum-free cryopreservation of human mesenchymal stem cells. Int J Artif Organs. 2010;33(6):370–80.

    CAS  PubMed  Google Scholar 

  34. Du T, Chao L, Zhao S, Chi L, Li D, Shen Y, et al. Successful cryopreservation of whole sheep ovary by using DMSO-free cryoprotectant. J Assist Reprod Genet. 2015;32(8):1267–75. doi:10.1007/s10815-015-0513-3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clapisson G, Salinas C, Malacher P, Michallet M, Philip I, Philip T. Cryopreservation with hydroxyethylstarch (HES) + dimethylsulfoxide (DMSO) gives better results than DMSO alone. Bull Cancer. 2004;91(4):E97–102.

    PubMed  Google Scholar 

  36. Kudo Y, Minegishi M, Itoh T, Miura J, Saito N, Takahashi H, et al. Evaluation of hematological reconstitution potential of autologous peripheral blood progenitor cells cryopreserved by a simple controlled-rate freezing method. Tohoku J Exp Med. 2005;205(1):37–43.

    Article  PubMed  Google Scholar 

  37. Shen HP, Ding CM, Chi ZY, Kang ZZ, Tan WS. Effects of different cooling rates on cryopreservation of hematopoietic stem cells from cord blood. Sheng Wu Gong Cheng Xue Bao. 2003;19(4):489–92.

    PubMed  Google Scholar 

  38. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, et al. Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev. 1998;51(1):53–8. doi:10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  39. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, et al. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25(1):66–73. doi:10.1093/humrep/dep346.

    Article  PubMed  Google Scholar 

  40. Mahmoudzadeh AR, Van Soom A, Bols P, Ysebaert MT, de Kruif A. Optimization of a simple vitrification procedure for bovine embryos produced in vitro: effect of developmental stage, two-step addition of cryoprotectant and sucrose dilution on embryonic survival. J Reprod Fertil. 1995;103(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  41. Rall WF. Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology. 1987;24(5):387–402.

    Article  CAS  PubMed  Google Scholar 

  42. Roy I, Gupta MN. Freeze-drying of proteins: some emerging concerns. Biotechnol Appl Biochem. 2004;39(Pt 2):165–77. doi:10.1042/BA20030133.

    Article  CAS  PubMed  Google Scholar 

  43. Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang XC, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci. 2005;94(7):1427–44. doi:10.1002/jps.20364.

    Article  CAS  PubMed  Google Scholar 

  44. Arav A, Natan D. Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Biopreserv Biobank. 2012;10(4):386–94. doi:10.1089/bio.2012.0021.

    Article  CAS  PubMed  Google Scholar 

  45. Tang M, Wolkers WF, Crowe JH, Tablin F. Freeze-dried rehydrated human blood platelets regulate intracellular pH. Transfusion. 2006;46(6):1029–37. doi:10.1111/j.1537-2995.2006.00838.x.

    Article  CAS  PubMed  Google Scholar 

  46. Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54:579–99. doi:10.1146/annurev.ph.54.030192.003051.

    Article  CAS  PubMed  Google Scholar 

  47. Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103. doi:10.1146/annurev.physiol.60.1.73.

    Article  CAS  PubMed  Google Scholar 

  48. Bruni F, Leopold AC. Glass transitions in soybean seed: relevance to anhydrous biology. Plant Physiol. 1991;96(2):660–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho H, Seo JH, Wong KH, Terasaki Y, Park J, Bong K, et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology. Sci Rep. 2015;5:15222. doi:10.1038/srep15222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33(2):89–96. doi:10.1007/s10014-016-0255-7.

    Article  CAS  PubMed  Google Scholar 

  51. Cumming AD, Linton A. Influence of the plasma protein concentration on renal function. Clin Sci (Lond). 1991;80(5):427–33.

    Article  CAS  Google Scholar 

  52. Huang L, Ye H, Qu J, Liu Y, Zhong C, Tang G, et al. Analysis of cerebrospinal fluid protein concentrations of patients with cryptococcal meningitis treated with antifungal agents. BMC Infect Dis. 2015;15:333. doi:10.1186/s12879-015-1063-0.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760–72. doi:10.1038/nbt.2989.

    Article  CAS  PubMed  Google Scholar 

  54. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1):014101. doi:10.1088/1758-5090/8/1/014101.

    Article  PubMed  Google Scholar 

  55. Nieskens TT, Wilmer MJ. Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol. 2016;790:46–56. doi:10.1016/j.ejphar.2016.07.018.

    Article  CAS  PubMed  Google Scholar 

  56. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 2016;34(2):156–70. doi:10.1016/j.tibtech.2015.11.001.

    Article  CAS  PubMed  Google Scholar 

  57. Konar D, Devarasetty M, Yildiz DV, Atala A, Murphy SV. Lung-an-a-chip technologies for disease modeling and drug development. Biomed Eng Comput Biol. 2016;7(Suppl 1):17–27. doi:10.4137/BECB.S34252.

    PubMed  PubMed Central  Google Scholar 

  58. Jastrzebska E, Tomecka E, Jesion I. Heart-on-a-chip based on stem cell biology. Biosens Bioelectron. 2016;75:67–81. doi:10.1016/j.bios.2015.08.012.

    Article  CAS  PubMed  Google Scholar 

  59. Torisawa YS, Mammoto T, Jiang E, Jiang A, Mammoto A, Watters AL, et al. Modeling hematopoiesis and responses to radiation countermeasures in a bone marrow-on-a-chip. Tissue Eng Part C Methods. 2016;22(5):509–15. doi:10.1089/ten.TEC.2015.0507.

    Article  PubMed  Google Scholar 

  60. Atac B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, et al. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip. 2013;13(18):3555–61. doi:10.1039/c3lc50227a.

    Article  CAS  PubMed  Google Scholar 

  61. Yasotharan S, Pinto S, Sled JG, Bolz SS, Gunther A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab Chip. 2015;15(12):2660–9. doi:10.1039/c5lc00021a.

    Article  CAS  PubMed  Google Scholar 

  62. Torisawa YS, Spina CS, Mammoto T, Mammoto A, Weaver JC, Tat T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663–9. doi:10.1038/nmeth.2938.

    Article  CAS  PubMed  Google Scholar 

  63. Heo YS, Lee HJ, Hassell BA, Irimia D, Toth TL, Elmoazzen H, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip. 2011;11(20):3530–7. doi:10.1039/c1lc20377k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Karlsson JO, Szurek EA, Higgins AZ, Lee SR, Eroglu A. Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology. 2014;68(1):18–28. doi:10.1016/j.cryobiol.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  65. •• Li L, Lv XQ, Guo H, Shi XT, Liu J. On-chip direct freezing and thawing of mammalian cells. RSC Adv. 2014;4(65):34443–7. doi:10.1039/c4ra06972b. This study describes a promising cryopreservation technology to directly preserve cell-seeded biochips

    Article  CAS  Google Scholar 

  66. Li S, Liu W, Lin LW. On-chip cryopreservation of living cells. Jala-J Assoc Lab Aut. 2010;15(2):99–106. doi:10.1016/j.jala.2010.01.001.

    Article  CAS  Google Scholar 

  67. • Zou Y, Yin T, Chen S, Yang J, Huang W. On-chip cryopreservation: a novel method for ultra-rapid cryoprotectant-free cryopreservation of small amounts of human spermatozoa. PLoS One. 2013;8(4):e61593. doi:10.1371/journal.pone.0061593. This work describes an approach that uses chip technology to facilitate preservation of cells by vitrification (ice-free cryopreservation)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thomson LK, Fleming SD, Schulke L, Barone K, Zieschang JA, Clark AM. The DNA integrity of cryopreserved spermatozoa separated for use in assisted reproductive technology is unaffected by the type of cryoprotectant used but is related to the DNA integrity of the fresh separated preparation. Fertil Steril. 2009;92(3):991–1001. doi:10.1016/j.fertnstert.2008.07.1747.

    Article  CAS  PubMed  Google Scholar 

  69. Crowe JH, Oliver AE, Hoekstra FA, Crowe LM. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology. 1997;35(1):20–30. doi:10.1006/cryo.1997.2020.

    Article  CAS  PubMed  Google Scholar 

  70. Wang S, Goecke T, Meixner C, Haverich A, Hilfiker A, Wolkers WF. Freeze-dried heart valve scaffolds. Tissue Eng Part C Methods. 2012;18(7):517–25. doi:10.1089/ten.TEC.2011.0398.

    Article  CAS  PubMed  Google Scholar 

  71. Wang S, Oldenhof H, Goecke T, Ramm R, Harder M, Haverich A, et al. Sucrose diffusion in decellularized heart valves for freeze-drying. Tissue Eng Part C Methods. 2015;21(9):922–31. doi:10.1089/ten.TEC.2014.0681.

    Article  PubMed  Google Scholar 

  72. Chakraborty N, Biswas D, Parker W, Moyer P, Elliott GD. A role for microwave processing in the dry preservation of mammalian cells. Biotechnol Bioeng. 2008;100(4):782–96. doi:10.1002/bit.21801.

    Article  CAS  PubMed  Google Scholar 

  73. Demirev PA. Dried blood spots: analysis and applications. Anal Chem. 2013;85(2):779–89. doi:10.1021/ac303205m.

    Article  CAS  PubMed  Google Scholar 

  74. Holub M, Tuschl K, Ratschmann R, Strnadova KA, Muhl A, Heinze G, et al. Influence of hematocrit and localisation of punch in dried blood spots on levels of amino acids and acylcarnitines measured by tandem mass spectrometry. Clin Chim Acta. 2006;373(1–2):27–31. doi:10.1016/j.cca.2006.04.013.

    Article  CAS  PubMed  Google Scholar 

  75. • Begolo S, Shen F, Ismagilov RF. A microfluidic device for dry sample preservation in remote settings. Lab Chip. 2013;13(22):4331–42. doi:10.1039/c3lc50747e. This study describes a device that can be used for dry preservation with commercially available sample preservation matrices

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Du W, Li L, Nichols KP, Ismagilov RF. SlipChip. Lab Chip. 2009;9(16):2286–92. doi:10.1039/b908978k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Asghar W, Yuksekkaya M, Shafiee H, Zhang M, Ozen MO, Inci F, et al. Engineering long shelf life multilayer biologically active surfaces on microfluidic devices for point of care applications. Sci Rep-Uk. 2016;6 doi:10.1038/srep21163. This study describe new dry preservation methodology to store biochips for up to 6 months without refrigeration, which can provide CD4 T cell testing in developing countries without reliable electricity, refrigeration, and medical equipment

  78. Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD. Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose. PLoS One. 2012;7(1):e29924. doi:10.1371/journal.pone.0029924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elliott GD, Lee PC, Paramore E, Van Vorst M, Comizzoli P. Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv Biobank. 2015;13(3):164–71. doi:10.1089/bio.2014.0078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13(12):2210–51. doi:10.1039/c3lc50169h.

    Article  CAS  PubMed  Google Scholar 

  81. Tatka L, Lazzari MD, Howard K. Low cost microfluidic platform for the electrochemical detection of nitrate in water for global health. Santa Clara University; 2015.

  82. Materne EM, Maschmeyer I, Lorenz AK, Horland R, Schimek KM, Busek M, et al. The multi-organ chip—a microfluidic platform for long-term multi-tissue coculture. J Vis Exp. 2015;98:e52526. doi:10.3791/52526.

    Google Scholar 

  83. Ji L, de Pablo JJ, Palecek SP. Cryopreservation of adherent human embryonic stem cells. Biotechnol Bioeng. 2004;88(3):299–312. doi:10.1002/bit.20243.

    Article  CAS  PubMed  Google Scholar 

  84. Malpique R, Ehrhart F, Katsen-Globa A, Zimmermann H, Alves PM. Cryopreservation of adherent cells: strategies to improve cell viability and function after thawing. Tissue Eng Part C Methods. 2009;15(3):373–86. doi:10.1089/ten.tec.2008.0410.

    Article  CAS  PubMed  Google Scholar 

  85. Xu X, Liu Y, Cui Z, Wei Y, Zhang L. Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol. 2012;162(2–3):224–31. doi:10.1016/j.jbiotec.2012.09.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant no. 5RO1GM101796 from the National Institutes of Health (NIH) to GDE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria D. Elliott.

Ethics declarations

Conflict of Interest

Shangping Wang and Gloria D. Elliott declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Artificial Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Elliott, G.D. Synergistic Development of Biochips and Cell Preservation Methodologies: a Tale of Converging Technologies. Curr Stem Cell Rep 3, 45–53 (2017). https://doi.org/10.1007/s40778-017-0074-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-017-0074-8

Keywords

Navigation